User Tools

Site Tools


bibtex_test

[1]P. Zuidema u. a., „Recommendations for improving U.S. NSF-Supported airborne microwave radiometry“, Bull. Amer. Meteor. Soc., Bd. 97, S. 2257–2261, 2016, doi: 10.1175/BAMS-D-15-00081.1. [2]K. Wolf, A. Ehrlich, M. Mech, R. J. Hogan, und M. Wendisch, „Evaluation of ECMWF radiation scheme using aircraft observations of spectral irradiance above clouds“, Journal of Atmospheric Sciences, 2020. [3]Wendisch u. a., „The arctic cloud puzzle: Using ACLOUD/PASCAL multiplatform observations to unravel the role of clouds and aerosol particles in arctic amplification“, Bulletin of the American Meteorological Society, Bd. 100, Nr. 5, S. 841–871, Mai 2019, doi: 10.1175/BAMS-D-18-0072.1. [4]B. Stevens u. a., „A high-altitude long-range aircraft configured as a cloud observatory: The NARVAL expeditions“, Bulletin of the American Meteorological Society, Bd. 100, Nr. 6, S. 1061–1077, Juni 2019, doi: 10.1175/BAMS-D-18-0198.1. [5]T. R. Sreerekha u. a., „Development of an RT model for frequencies between 200 and 1000 GHz, Final Report“, ESTEC, Final report, 2006. [6]S. Schnitt, E. Orlandi, M. Mech, A. Ehrlich, und S. Crewell, „Characterization of water vapor and clouds during the next-generation aircraft remote sensing for validation (NARVAL) south studies“, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Bd. 10, Nr. 7, S. 3114–3124, Juli 2017, doi: 10.1109/JSTARS.2017.2687943. [7]A. Schäfler u. a., „The North Atlantic Waveguide and Downstream impact EXperiment“, Bulletin of the American Meteorological Society, Bd. 99, Nr. 8, S. 1607–1637, Aug. 2018, doi: 10.1175/BAMS-D-17-0003.1. [8]E. Ruiz-Donoso u. a., „Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed by airborne remote sensing during a cold air outbreak and a warm air advection event“, Atmospheric Chemistry and Physics Discussions, S. 1–31, 2019, doi: 10.5194/acp-2019-960. [9]P. Rostosky, G. Spreen, S. Gerland, M. Huntemann, und M. Mech, „Modeling the microwave emission of snow on arctic sea ice for estimating the uncertainty of satellite retrievals“, Journal of Geophysical Research: Oceans, Bd. 125, Nr. 3, März 2020, doi: 10.1029/2019JC015465. [10]S. Reitter, K. Fröhlich, A. Seifert, S. Crewell, und M. Mech, „Evaluation of ice and snow content in the global numerical weather prediction model GME with CloudSat“, Geoscientific Model Development, Bd. 4, Nr. 3, S. 579–589, Juli 2011, doi: 10.5194/gmd-4-579-2011. [11]M. Pfeifer u. a., „Validating precipitation forecasts using remote sensor synergy: A case study approach“, Meteorologische Zeitschrift, Bd. 19, Nr. 6, S. 601–617, Dez. 2010, doi: 10.1127/0941-2948/2010/0487. [12]I. Meirold-Mautner u. a., „Radiative transfer simulations using mesoscale cloud model outputs: Comparisons with passive microwave and infrared satellite observations for midlatitudes“, Journal of the Atmospheric Sciences, Bd. 64, Nr. 5, S. 1550–1568, Mai 2007, doi: 10.1175/jas3896.1. [13]M. Mech u. a., „HAMP-the microwave package on the high altitude and long range research aircraft (HALO)“, Atmospheric Measurement Techniques, Bd. 7, Nr. 12, S. 4539–4553, Dez. 2014, doi: 10.5194/amt-7-4539-2014. [14]M. Mech, M. Maahn, D. Ori, und E. Orlandi, „PAMTRA: Passive and active microwave TRAnsfer tool v1.0“, Zenodo, Dez. 2019, doi: 10.5281/ZENODO.3582992. [15]M. Mech u. a., „PAMTRA 1.0: A Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere“, Geoscientific Model Development Discussions, S. 1–34, 2020, doi: 10.5194/gmd-2019-356. [16]M. Mech und P. Koepke, „Model for UV irradiance on arbitrarily oriented surfaces“, Theoretical and Applied Climatology, Bd. 77, Nr. 3–4, S. 151–158, März 2004, doi: 10.1007/s00704-003-0023-6. [17]M. Mech, L.-L. Kliesch, A. Anhäuser, T. Rose, P. Kollias, und S. Crewell, „Microwave Radar/radiometer for Arctic Clouds (MiRAC): First insights from the ACLOUD campaign“, Atmospheric Measurement Techniques, Bd. 12, Nr. 9, S. 5019–5037, Sep. 2019, doi: 10.5194/amt-12-5019-2019. [18]M. Mech, S. Crewell, I. Meirold-Mautner, C. Prigent, und J. P. Chaboureau, „Information content of millimeter-wave observations for hydrometeor properties in mid-latitudes“, in IEEE transactions on geoscience and remote sensing, Juli 2007, Bd. 45, S. 2287–2299, doi: 10.1109/TGRS.2007.898261. [19]M. Mech, „Potential of millimeter- and submillimeter-wave satellite observations for hydrometeor studies“, University of Cologne, 2008. [20]V. Mattioli u. a., „Atmospheric gas absorption knowledge in the submillimeter: Modeling, field measurements, and uncertainty quantification“, Bulletin of the American Meteorological Society, Bd. 100, Nr. 12, S. ES291–ES295, Dez. 2019, doi: 10.1175/BAMS-D-19-0074.1. [21]H. Konow u. a., „A unified data set of airborne cloud remote sensing using the HALO Microwave Package (HAMP)“, Earth System Science Data, Bd. 11, Nr. 2, S. 921–934, Juli 2019, doi: 10.5194/essd-11-921-2019. [22]P. Koepke und M. Mech, „UV irradiance on arbitrarily oriented surfaces: Variation with atmospheric and ground properties“, Theoretical and Applied Climatology, Bd. 81, Nr. 1–2, S. 25–32, Feb. 2005, doi: 10.1007/s00704-004-0106-z. [23]E. M. Knudsen u. a., „Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017“, Atmospheric Chemistry and Physics, Bd. 18, Nr. 24, S. 17995–18022, Dez. 2018, doi: 10.5194/acp-18-17995-2018. [24]L.-L. Kliesch und M. Mech, „Airborne radar reflectivity and brightness temperature measurements with POLAR 5 during ACLOUD in May and June 2017“, 2019, [Online]. Verfügbar unter: https://doi.pangaea.de/10.1594/PANGAEA.899565. [25]M. Jacob u. a., „Investigating the liquid water path over the tropical Atlantic with synergistic airborne measurements“, Atmospheric Measurement Techniques, Bd. 12, Nr. 6, S. 3237–3254, Juni 2019, doi: 10.5194/amt-12-3237-2019. [26]A. Ehrlich u. a., „A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign“, Earth System Science Data, Bd. 11, Nr. 4, S. 1853–1881, Nov. 2019, doi: 10.5194/essd-11-1853-2019. [27]J. Egger u. a., „Diurnal winds in the himalayan kali gandaki valley. Part III: Remotely piloted aircraft soundings“, Monthly Weather Review, Aug. 2002, doi: 10.1175/1520-0493(2002)130<2042:DWITHK>2.0.CO;2. [28]S. Crewell, C. Prigent, und M. Mech, „Spaceborne microwave radiometry“, in Springer handbook of atmospheric measurements, Springer, 2020. [29]S. Crewell u. a., „The general observation period 2007 within the priority program on quantitative precipitation forecasting: Concept and first results“, Meteorologische Zeitschrift, Bd. 17, Nr. 6, S. 849–866, Dez. 2008, doi: 10.1127/0941-2948/2008/0336. [30]S. Crewell, U. Löhnert, M. Mech, und C. Simmer, „Mikrowellenradiometrie für wasserdampf- und wolkenbeobachtung“, in Meteorologische fortbildung - fernmessung von wasserdampf und wolken I, Deutscher Wetterdienst, 2010, S. 109–118. [31]J.-P. P. Chaboureau u. a., „A midlatitude precipitating cloud database validated with satellite observations“, Journal of Applied Meteorology and Climatology, Bd. 47, Nr. 5, S. 1337–1353, Mai 2008, doi: 10.1175/2007JAMC1731.1. [32]M. P. Cadeddu, R. Marchand, E. Orlandi, D. D. Turner, und M. Mech, „Microwave passive ground-based retrievals of cloud and rain liquid water path in drizzling clouds: Challenges and possibilities“, IEEE Transactions on Geoscience and Remote Sensing, Bd. 55, Nr. 11, S. 6468–6481, Nov. 2017, doi: 10.1109/TGRS.2017.2728699. [33]M. P. Cadeddu, V. P. Ghate, und M. Mech, „Ground-based observations of cloud and drizzle liquid water path in stratocumulus clouds“, Atmospheric Measurement Techniques, Bd. 13, Nr. 3, S. 1485–1499, März 2020, doi: 10.5194/amt-13-1485-2020.

bibtex_test.txt · Last modified: 2021/01/22 22:17 by 127.0.0.1