User Tools

Site Tools


instruments:mwr_references

References on MWR

Overview Articles and Books

Bohren C. F. and D.R. Huffman, 198s: Absorption and Scattering of Light by Small Particles, New York, John Wiley.

Bohren, C. F. and E. Clothiaux, 2006: Fundamentals of Atmospheric Radiation: An Introduction with 400 Problems, Physics Textbook, Wiley-VCH, 472 pp.

Goody R. M. and Y. L. Yung, 1995: Atmospheric Radiation, Theoretical Basis, Oxford University Press, Second Edition, 544 pp.

Hewison T., 2006: Profiling Temperature and Humidity by Ground-based Microwave Radiometers, PhD Thesis, Department of Meteorology, University of Reading. pdf

Janssen M. A., 1993: An Introduction to the Passive Remote Sensing of Atmospheres,” in Michael A. Janssen (ed.), Atmospheric Remote Sensing by Microwave Radiometry, New York, J. Wiley & Sons, Inc, pp.1-36.

Mätzler, C., 2006: Thermal Microwave Radiation: Applications for Remote Sensing, Thermal Microwave Radiation: Applications for Remote Sensing, ed.: C. Mätzler, no.: 52, series: IEE Electromagnetic Wave series, The Institution of Engineering and Technology (IET), ISBN 0-86341-573-3 / 978-086341-573-9

Petty, G. W.: A First Course In Atmospheric Radiation (2nd Ed.), Sundog Publishing, Madison, Wisconsin, 460 pp, ISBN-10: 0-9729033-1-3.

Westwater, E. R., S. Crewell, C. Mätzler, 2004: A Review of Surface-Based Microwave and Millimeter Wave Radiometric Remote Sensing of the Troposphere, URSI Radio Science Bulletin, no.: 310, pp.: 59-80.

Westwater, E. R., S. Crewell, C. Mätzler, D. Cimini, 2005: Principles of surface-based microwave and millimeter wave radiometric remote sensing of the troposphere, Quaderni della Società Italiana di Elettromagnetismo, vol.: 1, no.: 3, pp.: 50-90.

Westwater, E. R., 1993: Ground-based Microwave Remote Sensing of Meteorological Variables. – In: Janssen, M. (Ed.): Atmospheric Remote Sensing by Microwave Radiometry, Wiley & Sons, Inc., 145–213.

Instruments and Calibration

Battaglia, A., P. Saavedra, C. Simmer, and T. Rose, 2009: Rain observations by a multi-frequency dual-polarized radiometer, IEEE Geosci. Remote Sens. Lett., 6, 354-358. ADMIRARI

Crewell, S., H. Czekala, U. Löhnert, C. Simmer, T. Rose, R. Zimmermann, and R. Zimmermann, 2001: Microwave radiometer for cloud carthography: A 22-channel ground-based microwave radiometer for atmospheric research, Radio Sci., vol. 36, no. 4, pp. 621–638.

Han Y. and E. R.Westwater, 2000: Analysis and improvement of tipping calibration for ground-based microwave radiometers, IEEE Trans. Geosci. Remote Sensing, vol. 38, pp. 1260–1276.

Martin L., M. Schneebeli, and C. Mätzler, 2006: ASMUWARA, a ground-based radiometer system for tropospheric monitoring, Meteorol. Z., vol. 15, No. 1, 11-17, DOI: 10.1127/0941-2948/2006/0092. pdf

Solheim, F., J. Godwin and R. Ware, 1998: Passive ground-based remote sensing of atmospheric temperature, water vapor, and cloud liquid water profiles by a frequency synthesized microwave radiometer, Meteorol. Z., Vol. 7, 370-376.

Gas Absorption and Water Permittivity

Cadeddu M. P., V. H. Payne, S. A. Clough, K. Cady-Pereira, and James C. Liljegren, 2007: Effect of the Oxygen Line-Parameter Modeling on Temperature and Humidity Retrievals From Ground-Based Microwave Radiometers, IEEE Trans. Geosci. Rem. Sens., vol. 45, no. 7, pp. 2216-2223.

Cadeddu, M.P. and D.D. Turner, 2011: Evaluation of water permittivity models from ground-based observations of cold clouds at frequencies between 23 and 170 GHz, IEEE Trans. Geosci. Rem. Sens., in press, doi:10.1109/TGRS.2011.2121074.

Clough S. A., M.W. Shephard, E. J.Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes, J. Quant. Spectrosc. Radiat. Transf., vol. 91, no. 2, pp. 233–244.

Debye P., Polar Molecules, New York, Dover, 1929.

Grant E. H., J. Buchanan, and H. F. Cook, 1957: Dielectric Behavior of Water at Microwave Frequencies,” Journal of Chemical Physics, 26, pp. 156-161.

Ellison, W., 2007: Permittivity of pure water at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100°C, J. Phys. Chem. Data, 36(1), 1–17.

Hewison T., D. Cimini, L. Martin, C. Gaffard, and J. Nash: “Validating clear air absorption models using ground-based microwave radiometers and vice-versa”, TUC special issue, Meteorologische Zeitschrift,

Liljegren J. C., S. A. Boukabara, K. Cady-Pereira, and S. A. Clough, 2005: The effect of the half-width of the 22-GHz water vapor line on retrievals of temperature and water vapor profiles with a twelve-channel microwave radiometer, IEEE Trans. Geosci. Rem. Sens., vol. 43, no. 5, pp. 1102–1108.

Liebe H. J. and D. H. Layton, 1987: Millimeter Wave Properties of the Atmosphere: Laboratory Studies and Propagation Modeling,” National Telecommunications and Information Administration (NTIA) Report 87-24, 74 pp. (available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA, 22161).

Liebe H. J., G. A. Hufford, and T. Manabe, 1991: A Model for the Complex Permittivity of Water at Frequencies below 1 THz, International Journal of Infrared and Millimeter Waves, 12(7), pp. 659-675.

Liebe H. J., G. A. Hufford, and M. G. Cotton, 1993: Propagation Modeling of Moist Air and Suspended Water/Ice Particles at Frequencies below 1000, in AGARD Conference Proceedings 542, Atmospheric propagation effects through natural and man-made obscurants for visible through MM-wave radiation, pp. 3.1 to 3.10 (available from NASA Center for Aerospace Information, Linthicum Heights, MD).

Mätzler, C., P. Rosenkranz, and J. Cermak, 2010: Microwave absorption of supercooled clouds and implications for the dielectric properties of water, J. Geophys. Res., 115, D23208, doi:10.1029/2010JD014283.

Payne V. H., J. S. Delamere, K. E. Cady-Pereira, R. R. Gamache, J.-L.Moncet, E. J. Mlawer, and S. A. Clough, 2008: Air-broadened half-widths of the 22 GHz and 183 GHz water vapor lines, IEEE Trans. Geosci. Rem. Sens., vol. 46, no. 11, pp. 3601–3617.

Payne, V.H., E.J. Mlawer, K.E. Cady-Pereira, and J.-L. Moncet, 2011: Water vapor continuum absorption in the microwave, IEEE Trans. Geosci. Rem. Sens., 49, 2194-2208, doi:10.1109/TGRS.2010.2091416.

Rosenkranz P. W., 1993: Absorption Of Microwaves By Atmospheric Gases, Chapter 2 in Michael A. Janssen (ed.), Atmospheric Remote Sensing by Microwave Radiometry, M. A. Janssen, Ed., New York, J. Wiley & Sons, Inc., 1993, pp. 37-90.

Rosenkranz P. W., 1998: Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Science, 33, 4, pp. 919-928.

Rosenkranz P. W., 1999: Correction to “Water vapor microwave continuum absorption: A comparison of measurements and models”, Radio Science, 34, 4, pp. 1025.

Stogryn, A. P., H. T. Bull, K. Rubayi, and S. Iravanchy, 1995: The microwave permittivity of sea and fresh water, Aerojet Internal Rep., Aerojet, Sacramento, Calif.

Turner D. D., M. P. Cadeddu, U. Löhnert, S. Crewell, and A. M. Vogelmann, 2009: Modifications to the Water Vapor Continuum in the Microwave Suggested by Ground-Based 150-GHz Observations, IEEE Trans. Geosci. Rem. Sens., vol. 47, no. 10, pp. 3326-3337.

Retrieval and Information Content

Churnside J. H., J. H., T. A. Stermitz, and J. A. Schroeder, 1994: Temperature Profiling with Neural Network Inversion of Microwave Radiometer Data, J. Atmos. Oceanic Technol., 11, pp.105-109

Crewell S., K. Ebell, U. Loehnert, and D. D. Turner, 2009: Can liquid water profiles be retrieved from passive microwave zenith observations?, Geophys. Res. Lett., V. 36, L06803, doi:10.1029/2008GL036934

Crewell, S., and U. Löhnert, 2003: Accuraccy of cloud liquid water path from ground-based microwave radiometry. Part II. Sensor accuracy and synergy, Radio Science, Vol. 38, 3, 8042, doi:10.1029/2002RS002634

Hewison T., 2007: 1D-VAR retrievals of temperature and humidity profiles from a ground-based microwave radiometer, IEEE Trans. Geosci. Rem. Sens., Vol. 45, No. 7, pp. 2163-2168.

Huang, D., Y. Liu, and W. Wiscombe, 2008: Cloud tomography: Role of constraints and a new algorithm, J. Geophys. Res., 113, D23203, doi:10.1029/2008JD009952.

Löhnert, U., and S. Crewell, 2003: Accuraccy of cloud liquid water path from ground-based microwave radiometry. Part I. Dependency on Cloud model statistics, Radio Science, Vol. 38, 3, 8041, doi:10.1029/2002RS002654.

Mätzler, C., and J. Morland, 2009: Refined physical retrieval of integrated water vapor and cloud liquid for microwave radiometer data, IEEE Trans. Geosci. Remote Sens., 47(6), 1585–1594.

Padmanabhan, S., S. C., Reising, J. Vivekanandan, F.Iturbide-Sanchez, 2009: Retrieval of Atmospheric Water Vapor Density With Fine Spatial Resolution Using Three-Dimensional Tomographic Inversion of Microwave Brightness Temperatures Measured by a Network of Scanning Compact Radiometers, IEEE Trans. Geosci. Rem. Sens., vol. 47, no. 11, 3708 – 3721.

Solheim, F., J. Godwin, E. Westwater, Y. Han, S. Keihm, K. Marsh and R. Ware, 1998: Radiometric profiling of temperature, water vapor, and cloud liquid water using various inversion methods, Rad. Sci., 33, 393-404.

Turner, D.D., S.A. Clough, J.C. Liljegren, E.E. Clothiaux, K. Cady-Pereira, and K.L. Gaustad, 2007: Retrieving liquid water path and precipitable water vapor from Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 3680-3690, doi:10.1109/TGRS.2007.903703.

Validation

Cimini D., E. Campos, R. Ware, S. Albers, G. Giuliani, J. Oreamuno, P. Joe, S. Koch, S. Cober, and E. Westwater, 2011: Thermodynamic Atmospheric Profiling during the 2010 Winter Olympics Using Ground-based Microwave Radiometry, IEEE Trans. Geosci. Rem. Sens., accepted.

Cimini D., E. R. Westwater, and A. J. Gasiewski, 2010: Temperature and humidity profiling in the Arctic using millimeter-wave radiometry and 1DVAR, IEEE Trans. Geosci. Rem. Sens., Vol. 48, 3, 1381-1388, 10.1109/TGRS.2009.2030500.

Cimini, D., T. J. Hewison, L. Martin, J. Güldner, C. Gaffard and F. S. Marzano, 2006: Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC, Met. Zeitschrift, Vol. 15, No. 1, 45-56.

Crewell, S., and U. Löhnert, 2007: Accuracy of boundary layer temperature profiles retrieved with multi-frequency, multi-angle microwave radiometry, IEEE Trans. Geosci. Rem. Sens., Vol. 45, 3, 2195-2201, DOI10.1109/TGRS.2006.888434.

Güldner J. and D. Spänkuch, 2001: Remote Sensing of the Thermodynamic State of the Atmospheric Boundary Layer by Ground-Based Microwave Radiometry, J. Atmos. Oceanic Technol., 18, pp. 925-933.

Kadygrov, E. N. and D. R. Pick, 1998: The potential performance of an angular scanning single channel microwave radiometer and some comparisons with in situ observations, Meteorol. Appl., vol. 5, pp. 393–404.

Löhnert U., E. van Meijgaard, H. K. Baltink, S. Groß, and R. Boers, 2007: Accuracy assessment of an integrated profiling technique for operationally deriving profiles of temperature, humidity and cloud liquid water, J. Geophys. Res., vol. 112, no. D4, p. D04 205.

Mattioli V., E. R. Westwater, S. I. Gutman, and V. R. Morris, 2005: Forward Model Studies of Water Vapor using Scanning Microwave Radiometers, Global Positioning System, and Radiosondes during the Cloudiness Inter-Comparison Experiment, IEEE Trans. Geosci. Rem. Sens.,. 43(5), pp. 1012-1021.

Westwater, E. R., Y. Han, V. G. Irisov, V. Leuskiy, E. N. Kadygrov, and S. A. Viazankin, 1999: Remote sensing of boundary-layer temperature profiles by a scanning 5-mm microwave radiometer and RASS: Comparison experiment, J. Atmos. Ocean. Technol., vol. 16, no. 7, pp. 805–818.

Process Studies

Czekala, H., S. Crewell, C. Simmer, A. Thiele, A. Hornbostel and A. Schroth, 2001: Interpretation of polarization features in ground-based microwave observations as caused by horizontally aligned oblate spheroids, J. Appl. Meteorology, vol. 40, pp. 1918-1932.

Kneifel, S., U. Löhnert, A. Battaglia, S. Crewell, and D. Siebler, 2010: Snow scattering signals in ground-based passive microwave radiometer measurements, J. Geophys. Res., 115, D16214, doi:10.1029/2010JD013856

Kneifel, S., S. Crewell, U. Löhnert and J. Schween, 2009: Investigating water vapor variability by groundbased microwave radiometry: Evaluation using airborne observations, IEEE Trans. Geosci. Rem. Sens., 6(1), 157-161, DOI.10.1109/LGRS.2008.2007659.

Marzano F.S., D. Cimini, and M. Montopoli, 2010: Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data, Atmospheric Research, doi:10.1016/j.atmosres.2010.03.019.

Schween, J.H., S. Crewell, and U. Löhnert, 2011: Horizontal-humidity gradient from one single-scanning microwave Rradiometer, IEEE Geosci. Remote Sens. Lett. 8(2), 336-340.

Synergy with other Instruments

Ebell, K., U. Löhnert, S. Crewell, D. Turner, 2010: On characterizing the error in a remotely sensed liquid water content profile, Atmospheric Research, 98(1), 57-68. DOI:10.1016/j.atmosres.2010.06.002.

Han Y. and E. R. Westwater, 1997: Applications of Kalman Filtering to Derive Water Vapor from Raman Lidar and Microwave Radiometers, J. Atmos. Oceanic Technol., 14, Part 1, June, 481-487.

Löhnert U., D. Turner, and S. Crewell, 2009: Ground-Based Temperature and Humidity Profiling Using Spectral Infrared and Microwave Observations. Part I: Simulated Retrieval Performance in Clear-Sky Conditions, J. Appl. Meteorol. Clim., 48(5):1017-1032

Löhnert, U., S. Crewell, O. Krasnov, E. O’Connor, H. Russchenberg, 2008: Advances in continuously profiling the thermodynamic state of the boundary layer: Integration of measurements and methods. J. Atmos. Oceanic Technol., 25, 1251–1266.

Löhnert U., S. Crewell, and C. Simmer, 2004: An integrated approach toward retrieving physically consistent profiles of temperature, humidity, and cloud liquid water, J. Appl. Meteorol., vol. 43, no. 9, pp. 1295–1307.

instruments/mwr_references.txt · Last modified: 2021/01/22 22:17 by 127.0.0.1