User Tools

Site Tools


publications

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
publications [2023/06/02 09:13] – [2022] neggerspublications [2024/05/01 09:44] (current) – [2024] neggers
Line 1: Line 1:
 ====== Publications ====== ====== Publications ======
  
 +===== 2024 =====
  
 +Burchart, Y., C. Beekmans and R. A. J. Neggers (2024): A Stereo Camera Network simulator for Large-Eddy Simulations of continental Shallow Cumulus clouds based on three-dimensional Path-Tracing. //J. Atmos. Modeling Earth Syst.//, https://doi.org/10.1029/2023MS003797
 +
 +Kiszler, T., Ori, D., and Schemann, V. (2023): Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds, EGUsphere [preprint], [[https://doi.org/10.5194/egusphere-2023-2986]]. 
 +
 +Paulus et al.: Airborne measurements of mesoscale divergence at high latitudes during HALO-(AC)3. In review for //J. Atmos. Sci.//, April 2024
 +
 +Schnierstein et al.: Standardized daily high-resolution large-eddy simulations of the Arctic boundary layer and clouds during the complete MOSAiC drift. Submitted to //JAMES//, https://essopenarchive.org/doi/full/10.22541/essoar.171033230.00246941
 +
 +Walbröl, A., Michaelis, J., Becker, S., Dorff, H., Gorodetskaya, I., Kirbus, B., Lauer, M., Maherndl, N., Maturilli, M., Mayer, J., Müller, H., Neggers, R. A. J., Paulus, F. M., Röttenbacher, J., Rückert, J. E., Schirmacher, I., Slättberg, N., Ehrlich, A., Wendisch, M., and Crewell, S.: Environmental conditions in the North Atlantic sector of the Arctic during the HALO–(AC)³ campaign, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-668, 2023. 
 +
 +Wendisch et al., 2024: Overview: Quasi-Lagrangian observations of Arctic air mass transformations – Introduction and initial results of the HALO–(AC)3 aircraft campaign. preprint, 
 +https://doi.org/10.5194/egusphere-2024-783
 ===== 2023 ===== ===== 2023 =====
  
-Chylik, J., D. Chechin, R. Dupuy, B. Kulla, C. Lüpkes, M. Mech, S. Mertes, and Neggers, R. A. J.: Impacts of aerosol on mixed-phase convection in simulated stagnant air masses over open water at high latitudes. //ACP//, https://doi.org/10.5194/acp-23-4903-2023+Kiszler, T., Ebell, K., & Schemann, V. (2023). A performance baseline for the representation of clouds and humidity in cloud-resolving ICON-LEM simulations in the Arctic. Journal of Advances in Modeling Earth Systems, 15, e2022MS003299. [[https://doi.org/10.1029/2022MS003299]]  
 + 
 +Chylik, J., D. Chechin, R. Dupuy, B. Kulla, C. Lüpkes, M. Mech, S. Mertes, and Neggers, R. A. J. (2023)Aerosol impacts on the entrainment efficiency of Arctic mixed-phase convection in simulated air mass over open water. //ACP//, https://doi.org/10.5194/acp-23-4903-2023
  
-Kirbus B, Tiedeck S, Camplani A, Chylik J, Crewell S, Dahlke S, Ebell K, Gorodetskaya I, Griesche H, Handorf D, Höschel I, Lauer M, Neggers R, Rückert J, Shupe MD, Spreen G, Walbröl A, Wendisch M and Rinke A (2023Surface impacts and associated mechanisms of a moisture intrusion into the Arctic observed in mid-April 2020 during MOSAiC. //Front. Earth Sci.// 11:1147848. https://doi.org/10.3389/feart.2023.1147848+Kirbus B, Tiedeck S, Camplani A, Chylik J, Crewell S, Dahlke S, Ebell K, Gorodetskaya I, Griesche H, Handorf D, Höschel I, Lauer M, Neggers R, Rückert J, Shupe MD, Spreen G, Walbröl A, Wendisch M and Rinke A2023Surface impacts and associated mechanisms of a moisture intrusion into the Arctic observed in mid-April 2020 during MOSAiC. //Front. Earth Sci.// 11:1147848. https://doi.org/10.3389/feart.2023.1147848
  
-Kirbus, B.and Co-Authors: Analysis of an Arctic cold air outbreak during autumn and related air mass transformations forced by surface changes and advection in higher altitudes. //Submitted for publication in Elementa, May 2023//+Kirbus, BenjaminJan Chylik, André Ehrlich, Sebastian Becker, Michael Schäfer, Roel Neggers, Manfred Wendisch; Analysis of an Arctic cold air outbreak during autumn and related air mass transformations forced by surface changes and advection in higher altitudes. //Elementa: Science of the Anthropocene//5 January 2023; 11 (1): 00079. doi: https://doi.org/10.1525/elementa.2023.00079
  
-Linke, O., Quaas, J., Baumer, F., Becker, S., Chylik, J., Dahlke, S., Ehrlich, A., Handorf, D., Jacobi, C., Kalesse-Los, H., Lelli, L., Mehrdad, S., Neggers, R. A. J., Riebold, J., Saavedra Garfias, P., Schnierstein, N., Shupe, M. D., Smith, C., Spreen, G., Verneuil, B., Vinjamuri, K. S., Vountas, M., and Wendisch, M.: Constraints on simulated past Arctic amplification and lapse-rate feedback from observations//Atmos. Chem. Phys. Discuss. [preprint]//, https://doi.org/10.5194/acp-2022-836, in review, 2023+Linke, O., Quaas, J., Baumer, F., Becker, S., Chylik, J., Dahlke, S., Ehrlich, A., Handorf, D., Jacobi, C., Kalesse-Los, H., Lelli, L., Mehrdad, S., Neggers, R. A. J., Riebold, J., Saavedra Garfias, P., Schnierstein, N., Shupe, M. D., Smith, C., Spreen, G., Verneuil, B., Vinjamuri, K. S., Vountas, M., and Wendisch, M. (2023): Constraints on simulated past Arctic amplification and lapse rate feedback from observations//Atmos. Chem. Phys. //, https://doi.org/10.5194/acp-23-9963-2023 
  
 ===== 2022 ===== ===== 2022 =====
publications.1685690029.txt.gz · Last modified: 2023/06/02 09:13 by neggers