User Tools

Site Tools


publications:reviewed

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
publications:reviewed [2021/01/22 12:03] – [2020] adrostpublications:reviewed [2022/12/11 21:31] (current) – [2018] uli
Line 7: Line 7:
 **Marke, T., S. Crewell**, V. Schemann, **J. H. Schween**, and M. Tuononen, 2018: Long-Term Observations and High Resolution Modeling of Mid-Latitude Nocturnal Boundary-Layer Processes Connected to Low-Level-Jets,  //J. Appl. Meteor. Climatol.//, 57, 1155–1170, https://doi.org/10.1175/JAMC-D-17-0341.1. **Marke, T., S. Crewell**, V. Schemann, **J. H. Schween**, and M. Tuononen, 2018: Long-Term Observations and High Resolution Modeling of Mid-Latitude Nocturnal Boundary-Layer Processes Connected to Low-Level-Jets,  //J. Appl. Meteor. Climatol.//, 57, 1155–1170, https://doi.org/10.1175/JAMC-D-17-0341.1.
  
-==== submitted ==== 
- 
- 
-**Böhm, C.**, **J. H. Schween**, M. Reyers, B. Maier, **U. Löhnert**, **S. Crewell**: Towards a climatology of fog frequency in the Atacama Desert via multi-spectral satellite data and machine learning techniques, //Journal of Applied Meteorology and Climatology//, re-submitted 20 December 2020 
- 
-**Crewell, C.**, **K. Ebell, P. Konjari, M. Mech, T. Nomokonova, A. Radovan, D. Strack**, A. M. Triana Gomez, S. Noel, R. Scarlat, G. Spreen, M. Maturilli, A. Rinke, I. Gorodetskaya, C. Viceto, T. August, and M. Schröder: A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means, //Atmospheric Measurement Techniques Discussions//, [[https://doi.org/10.5194/amt-2020-491]] 
- 
-**Jentzsch, K.**, A. Schulz, N. Pirk, T.Foken, **S. Crewell**, J. Boike: Strong CO2 exchange during synoptic scale events introduces large uncertainty into the Arctiv Carbon budget, Geophysical Research Letters, submitted 22 December 2020  
- 
-Karlsson, L., R. Krejci, M. Koike, **K. Ebell**, and Paul Zieger, The role of nanoparticles in Arctic cloud formation, //Atmos. Chem. Phys. Discuss.//, https://doi.org/10.5194/acp-2020-417, re-submitted 8 December 2020, in review. 
- 
-Stevens, B, **C.Acquistapace**, **S.Crewell**, **M.Jacob**, **M.Mech**, **S.Schnitt**, et al.: EUREC4A overview paper, ESSD (2020, submitted)   
- 
- 
-==== accepted ==== 
- 
- 
- 
-**Schoger, S. Y.**, D. Moisseev, A. von Lerber, **S. Crewell**, and **K. Ebell**: Snowfall rate retrieval for K- and W-band radar measurements designed in Hyytiälä, Finland, and tested at Ny-Ålesund, Svalbard, //Journal of Applied Meteorology and Climatology//, accepted 11 December 2020 
- 
- 
-==== 2021 ==== 
  
 ==== 2020 ==== ==== 2020 ====
Line 49: Line 27:
 **Ebell, K., T. Nomokonova**, M. Maturilli, and C. Ritter, 2020: Radiative effect of clouds at Ny-Ålesund, Svalbard, as inferred from ground-based remote sensing observations, //Journal of Applied Meteorology and Climatology//, 59, 3-22, [[https://doi.org/10.1175/JAMC-D-19-0080.1]] **Ebell, K., T. Nomokonova**, M. Maturilli, and C. Ritter, 2020: Radiative effect of clouds at Ny-Ålesund, Svalbard, as inferred from ground-based remote sensing observations, //Journal of Applied Meteorology and Climatology//, 59, 3-22, [[https://doi.org/10.1175/JAMC-D-19-0080.1]]
  
-**Frank, C. W., B. Pospichal**, S. Wahl, J. D. Keller, A. Hense, and **S. Crewell**, 2020a: The added value of high resolution regional reanalyses for wind power applications, //Renewable Energy//, 148, 1094-1109 [[https://doi.org/10.1016/j.renene.2019.09.138]] +**Frank, C. W., B. Pospichal**, S. Wahl, J. D. Keller, A. Hense, and **S. Crewell**, 2020: The added value of high resolution regional reanalyses for wind power applications, //Renewable Energy//, 148, 1094-1109 [[https://doi.org/10.1016/j.renene.2019.09.138]]
- +
-**Frank, C.**, S. Fiedler, **S. Crewell**, 2020b: Balancing potential of natural variability and extremes in photovoltaic and wind energy production for European countries, //Renewable Energy//, [[https://doi.org/10.1016/j.renene.2020.07.103]]+
  
 **Gierens, R.**, S. Kneifel, M. D. Shupe, **K. Ebell**, M. Maturilli, and **U. Löhnert**, 2020: Low-level mixed-phase clouds in a complex Arctic environment,// Atmospheric Chemistry and Physics//, 20, 3459–3481, [[https://doi.org/10.5194/acp-20-3459-2020]] **Gierens, R.**, S. Kneifel, M. D. Shupe, **K. Ebell**, M. Maturilli, and **U. Löhnert**, 2020: Low-level mixed-phase clouds in a complex Arctic environment,// Atmospheric Chemistry and Physics//, 20, 3459–3481, [[https://doi.org/10.5194/acp-20-3459-2020]]
Line 63: Line 39:
 McMichael, L. A., Yang F., Marke, T., ** Löhnert. U.**, Mechem, D. B., Vogelmann, A. M., Sanchez, K., Tuononen, M., **Schween, J. H.**, 2020: Characterizing Subsiding Shells in Shallow Cumulus Using Doppler Lidar and Large‐Eddy Simulation, // Geophysical Research Letters//, 47(18), e2020GL089699, [[https://doi.org/10.1029/2020GL089699|DOI:10.1029/2020GL089699]] McMichael, L. A., Yang F., Marke, T., ** Löhnert. U.**, Mechem, D. B., Vogelmann, A. M., Sanchez, K., Tuononen, M., **Schween, J. H.**, 2020: Characterizing Subsiding Shells in Shallow Cumulus Using Doppler Lidar and Large‐Eddy Simulation, // Geophysical Research Letters//, 47(18), e2020GL089699, [[https://doi.org/10.1029/2020GL089699|DOI:10.1029/2020GL089699]]
  
-**Mech, M.**, M. Maahn, **S. Kneifel**, **D. Ori**, E. Orlandi, P. Kollias, V. Schemann, and **S. Crewell**, 2020: PAMTRA 1.0: Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere, //Geoscientific Model Development//, 13, 4229-4251, [[https://doi.org/10.5194/gmd-13-4229-2020]] +**Mech, M.**, M. Maahn, **S. Kneifel**, **D. Ori**, E. Orlandi, P. Kollias, V. Schemann, and **S. Crewell**, 2020: PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere, //Geoscientific Model Development//, 13, 4229-4251, [[https://doi.org/10.5194/gmd-13-4229-2020]] 
  
 Neher, I., **S. Crewell**, S. Meilinger, U. Pfeifroth, and J. Trentmann, 2020: Long-term variability of solar irradiance and its complications for photovoltaic power in West Africa, //Atmospheric Chemistry and Physics//, 20, 12871-12888, [[https://doi.org/10.5194/acp-20-12871-2020]] Neher, I., **S. Crewell**, S. Meilinger, U. Pfeifroth, and J. Trentmann, 2020: Long-term variability of solar irradiance and its complications for photovoltaic power in West Africa, //Atmospheric Chemistry and Physics//, 20, 12871-12888, [[https://doi.org/10.5194/acp-20-12871-2020]]
Line 69: Line 45:
 **Nomokonova, T., K. Ebell, U. Löhnert**, M. Maturilli, and C. Ritter, 2020: The influence of water vapor anomalies on clouds and their radiative effect at Ny-Ålesund, // Atmospheric Chemistry and Physics//, 20, 5157–5173, [[https://doi.org/10.5194/acp-20-5157-2020]] **Nomokonova, T., K. Ebell, U. Löhnert**, M. Maturilli, and C. Ritter, 2020: The influence of water vapor anomalies on clouds and their radiative effect at Ny-Ålesund, // Atmospheric Chemistry and Physics//, 20, 5157–5173, [[https://doi.org/10.5194/acp-20-5157-2020]]
  
-Reyers, M., **C. Böhm**,  L. Knarr Y. Shao, and **S. Crewell**,2020: Synoptic-to-regional scale analysis of rainfall in the Atacama Desert (18°S-26°S) using a long-term simulation with WRF, //Monthly Weather Review//, 148 (8), 1-51, [[https://doi.org/10.1175/MWR-D-20-0038.1]]+Reyers, M., **C. Böhm**,  L. Knarr Y. Shao, and **S. Crewell**,2020 (online): Synoptic-to-regional scale analysis of rainfall in the Atacama Desert (18°S-26°S) using a long-term simulation with WRF, //Monthly Weather Review//, 148 (8), 1-51, [[https://doi.org/10.1175/MWR-D-20-0038.1]]
  
 Rostosky, P., G. Spreen, S. Gerland, M. Huntemann, and **M. Mech**, 2020: Modeling the microwave emission of snow on Arctic sea ice for estimating the uncertainty of satellite retrievals, //Journal of Geophysical Research Oceans//, 125 (3), [[https://doi.org/10.1029/2019JC015465]] Rostosky, P., G. Spreen, S. Gerland, M. Huntemann, and **M. Mech**, 2020: Modeling the microwave emission of snow on Arctic sea ice for estimating the uncertainty of satellite retrievals, //Journal of Geophysical Research Oceans//, 125 (3), [[https://doi.org/10.1029/2019JC015465]]
Line 82: Line 58:
  
 **Schween, J. H.**, D. Hoffmeister, and **U. Löhnert**, 2020: Filling the Observational Gap in the Atacama Desert with a new Network of Climate Stations, //Global and Planetary Change//, 184, [[https://doi.org/10.1016/j.gloplacha.2019.103034]] **Schween, J. H.**, D. Hoffmeister, and **U. Löhnert**, 2020: Filling the Observational Gap in the Atacama Desert with a new Network of Climate Stations, //Global and Planetary Change//, 184, [[https://doi.org/10.1016/j.gloplacha.2019.103034]]
 +
 +Stephan, C.C., **Schnitt, S.**, Schulz, H., Bellenger, H., de Szoeke, S. et al, 2020: Ship- and island-based atmospheric soundings from the 2020 EUREC4A field campaign, //Earth System Science Data//, 13, 491–514, [[https://doi.org/10.5194/essd-13-491-2021]]
  
 Stevens, B., **C. Acquistapace**, **M. Costa-Surós**, **S. Crewell**, **M. Jacob**, **U. Löhnert**, **S. Schnitt**, et al., 2020: Large-eddy and Storm Resolving Models for Climate Prediction - The Added Value for Clouds and Precipitation, //Journal of the Meteorological Society of Japan//, 98(2), 395-435, [[https://doi.org/10.2151/jmsj.2020-021]] Stevens, B., **C. Acquistapace**, **M. Costa-Surós**, **S. Crewell**, **M. Jacob**, **U. Löhnert**, **S. Schnitt**, et al., 2020: Large-eddy and Storm Resolving Models for Climate Prediction - The Added Value for Clouds and Precipitation, //Journal of the Meteorological Society of Japan//, 98(2), 395-435, [[https://doi.org/10.2151/jmsj.2020-021]]
Line 143: Line 121:
 Aires, F., C. Prigent, M. Milz, S. Buehler, P. Eriksson, and **S. Crewell**, 2018: Towards more realistic hypotheses for the information content analysis of cloudy/precipitating situations - Application to an hyper-spectral instrument in the microwaves, //Quarterly Journal of the Royal Meteorological Society//, 2018;145:1–14, [[https://doi.org/10.1002/qj.3315]]. Aires, F., C. Prigent, M. Milz, S. Buehler, P. Eriksson, and **S. Crewell**, 2018: Towards more realistic hypotheses for the information content analysis of cloudy/precipitating situations - Application to an hyper-spectral instrument in the microwaves, //Quarterly Journal of the Royal Meteorological Society//, 2018;145:1–14, [[https://doi.org/10.1002/qj.3315]].
  
-**Frank, C. W.**, S. Wahl, J.D. Keller, **B. Pospichal, A**. Hense, **S. Crewell**, 2018: novel data set for solar energy applications based on high resolution reanalysis, // Solar Energy,// 164, 12-24, [[https://authors.elsevier.com/sd/article/S0038092X18301294|doi.org/10.1016/j.solener.2018.02.012]]. +**Frank, C. W.**, S. Wahl, J.D. Keller, **B. Pospichal, A**. Hense, **S. Crewell**, 2018: Bias correction of a novel European reanalysis data set for solar energy applications, // Solar Energy,// 164, 12-24, [[https://authors.elsevier.com/sd/article/S0038092X18301294|doi.org/10.1016/j.solener.2018.02.012]]. 
  
 He, S., **E.M. Knudsen**, D.W.J. Thompson, and T. Furevik, 2018: Evidence for predictive skill due to Arctic summertime sea-ice extent anomalies, // Geophys. Res. Lett.//, 45, 9114--9122, [[https://doi.org/10.1029/2018GL078281]]. He, S., **E.M. Knudsen**, D.W.J. Thompson, and T. Furevik, 2018: Evidence for predictive skill due to Arctic summertime sea-ice extent anomalies, // Geophys. Res. Lett.//, 45, 9114--9122, [[https://doi.org/10.1029/2018GL078281]].
publications/reviewed.1611313426.txt.gz · Last modified: 2021/01/22 12:03 by adrost