
Generated using the official AMS LATEX template—two-column layout. FOR AUTHOR USE ONLY, NOT FOR SUBMISSION!

J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

Powerlaw scaling in the internal variability of cumulus cloud size distributions due to
subsampling and spatial organization

R. A. J. NEGGERS∗, P. J. GRIEWANK

University of Cologne, Germany

AND T. HEUS

Cleveland State University

ABSTRACT

In this study the spatial structure of cumulus cloud populations is investigated using three-dimensional
snapshots from large-domain LES experiments. The aim is to understand and quantify the internal variability
in cloud size distributions due to subsampling effects and spatial organization. A set of idealized shallow
cumulus cases is selected with varying degrees of spatial organization, including a slowly organizing ma-
rine precipitating case and five more quickly organizing diurnal cases over land. A subdomain analysis is
applied, yielding cloud number distributions at sample sizes ranging from severely undersampled to nearly
complete. A strong powerlaw scaling is found in the relation between cloud number variability and subdomain
size, reflecting an inverse linear relation. Scaling subdomain size by cloud size yields a data collapse across
timepoints and cases, highlighting the role played by cloud spacing in controlling the stochastic variability.
Spatial organization acts on top of this baseline model, by increasing the maximum cloud size and by enhanc-
ing the variability in the number of smallest clouds. This reflects that the smaller clouds start to live on top
of larger-scale structures, favoring or inhibiting their formation. Compositing all continental cumulus cases
suggests the existence of a prototype diurnal time-dependence in the spatial organization. A simple stochastic
expression for cloud number variability is proposed, formulated in terms of two dimensionless groups and
accounting for both subsampling and spatial organization. The implications of the results for the stochastic
and scale-adaptive modeling of convection in the grey zone are briefly discussed.

1. Introduction

Recent advances in supercomputing have introduced a
”grey zone” in the representation of cumulus convection in
General Circulation Models (GCMs), in which this physi-
cal process is getting partially resolved (Wyngaard 2004).
Existing parameterization schemes, built on the assump-
tion that cumulus populations are fully sampled in the
GCM-gridbox, often lack the scale-awareness and scale-
adaptivity to conceptually and practically deal with this
situation. How to best achieve this is still an open research
question.

Research into the spatial structure of cumulus cloud
populations goes back decades (e.g. Cahalan and Joseph
1989; Sengupta et al. 1990; Nair et al. 1998), but has re-
cently intensified due to the arrival of the grey zone prob-
lem. A natural way of characterizing the scale-dependence
within a cumulus population is the size distribution of a
cloud field, which has been scientifically established for
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many cloud regimes using a large variety of instrumenta-
tion (e.g. Plank 1969; Raga et al. 1990; Benner and Curry
1998; Zhao and Di Girolamo 2006; Yuan 2011) and fine-
scale cloud-resolving simulation (e.g. Neggers et al. 2003;
Rieck et al. 2014; Senf et al. 2018). A characteristic fea-
ture of the size density of cumulus cloud number is its
shape, which has been described by lognormal, exponen-
tial and powerlaw functions. These shapes are argued to
reflect the underlying processes of cloud formation, inter-
action and subcritical percolation (Cohen and Craig 2006;
Ding et al. 2014). The size-range covered by the distribu-
tion has been found to differ between marine and continen-
tal cloud populations (Sakradzija and Hohenegger 2017).
Over land the maximum size of the distribution exhibits a
distinct diurnal dependence . With many studies relying on
fine-scale simulations of cumulus cloud populations, the
confrontation of simulated and observed cumulus popula-
tions has recently become an important focus point. Both
area-covering measurements (Kassianov et al. 2005) and
vertically pointing measurements (Lareau et al. 2018) have
started to provide a wealth of new information about cu-
mulus cloud populations at high resolutions and frequen-
cies.
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Building on these new results and insights, a new class
of convection schemes has recently emerged in which the
transport is explicitly formulated in terms of discretized
Cloud Size Densities (CSDs, e.g. Wagner and Graf 2010;
Park 2014; Neggers 2015). In essence these schemes
adopt the spectral approach in convective modeling as first
proposed by Arakawa and Schubert (1974). Compared to
bulk convection schemes the CSD is a new variable that re-
quires closure, concerning both its functional form and its
range. Differences exist among schemes in how the CSD
is reconstructed. But a general benefit is that the CSD is in
general well observable, allowing such models to be con-
strained by both existing and new datasets. Furthermore,
scale-awareness is by definition present at the foundation
of the scheme (Neggers 2015). The reconstructed CSD
can be size-filtered, which introduces scale-adaptivity in
the parameterized convective transport and clouds (Brast
et al. 2018).

A complicating factor is that the CSD is not a global
constant and exhibits both external and internal variabil-
ity. External variability arises from various sources such
as large-scale synoptic conditions or surface properties
(Rieck et al. 2014). In constrast, internal variability arises
due to spatial sampling issues. Given a well defined CSD
reflecting a cloud population covering an infinitely large
area, a limited spatial sampling leads to stochastic variabil-
ity (e.g. Nair et al. 1998; Cohen and Craig 2006). This sit-
uation applies to convective modeling in the grey zone, in
which the gridbox has become too small to include the full
population (Dorrestijn et al. 2013; Honnert et al. 2011). In
CSDs diagnosed in LES realizations of a relatively small
domain this stochastic signal is sometimes present the
right tail, where large clouds are barely sampled (Neggers
et al. 2003). The spatial organization in a cloud field can
add to this stochastic variability, by introducing perturba-
tions in the cloud populations on scales much larger than
the boundary layer depth (e.g. Seifert and Heus 2013).
Physical-dynamical processes that drive spatial organiza-
tion include to cold pool formation (e.g. Schlemmer and
Hohenegger 2014) and oscillations (Sakradzija et al. 2014;
Feingold et al. 2017).

In recent years super-large-domain LES has become
computationally feasible (Khairoutdinov and Randall
2006; Satoh et al. 2008; Heinze et al. 2016), and has
offered new ways to study the CSD and its variability.
The availability of high spatial resolution in combination
with a large domain size yields cloud size distributions
that can freely form and evolve across a range of scales
that is less and less artificially constrained at both ends.
The large domain allows sampling the cumulus popula-
tion more completely, also covering the rarely occurring
largest clouds better. With the cumulus clouds still re-
solved, the ever larger domain of the simulation also al-
lows mesoscale fluctuations to form naturally and start to

affect the CSD. The opportunities created by super-large-
LES to investigate the behavior of cumulus CSDs and their
interaction with mesoscale organization have only recently
been started to be explored (e.g. Senf et al. 2018).

The goal of this study is to use large-domain simula-
tions to investigate and quantify the internal variability in
a cumulus CSD. We ask how this variability depends on
i) the domain size of the analysis and ii) the degree of
spatial organization within the cloud population. The aim
is to work with domain sizes large enough to approach
full sample size when diagnosing the CSDs. Two different
convective regimes are investigated. The first is a slowly
organizing marine cumulus case based on the RICO field
campaign (Rauber et al. 2007). The second regime reflects
continental summertime conditions at the Southern Great
Plains (SGP) site of the Atmospheric Radiation Measure-
ment program (ARM, Stokes and Schwartz 1994). A sub-
domain analysis is performed for all fields to quantify the
impact of subsampling on the CSD. The difference in or-
ganization speed between the two regimes then provides
insight on how this process affects the internal variabil-
ity of shallow cumulus CSDs. TThe implications of the
obtained results for our understanding of cumulus popula-
tions in general and for stochastic cumulus parameteriza-
tion in the grey zone in particular will be discussed.

2. Method

a. Large eddy simulations

This study makes use of LES results for two well-
defined shallow cumulus regimes, in which the pace of
the spatial organization differs considerably. The first, a
slowly organizing cloud regime, reflects marine subtropi-
cal subsidence conditions as observed during the Rain in
Cumulus over the Ocean (RICO) field campaign (Rauber
et al. 2007). The spatial organization in this case is related
to warm precipitation processes, producing cold pools
with low cloud mass that are separated by convergence
lines where clouds tend to congregate. The spatial organi-
zation in this case is a slow process, taking multiple days.
The second, faster organizing cloud regime reflects diurnal
cycles of continental shallow cumulus at the ARM SGP
site. For this regime five day-long cases are chosen, which
are all part of the archive of simulations for the ARM SGP
site in 2016 generated by the LES ARM Symbiotic Sim-
ulation And Observation Workflow (LASSO, Gustafson
et al. 2017b). The cases include 18 May, 19 and 25 June,
16 July and 18 August 2016 (from now on be referred
to as the 20160518, 20160619, 20160625, 20160716 and
20160818 cases). These days are selected because they
best reflect the prototype view of diurnal cycles of shal-
low convection, with most daytime cloudiness associated
with surface driven convective clouds and with more or
less clear-sky conditions before and afterwards.
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FIG. 1: Vertically projected cloud masks for the six timepoints during the LES simulation of the RICO case that are
considered in this study. The domain size shown is 51.2 km. A gridpoint is masked (black) in case any condensate
exists in the vertical column.

FIG. 2: Similar to Fig. 1, but now showing the cloud mask for 6 timepoints during the LASSO 20160518 case. Domain
size is 25km.

The LES experiments for these 6 cases have already
been described in detail in the literature, and only the
details relevant for this study will be summarized here.
The RICO composite shallow cumulus case (vanZanten
et al. 2011) is simulated using the UCLA-LES code, as
described in detail by Heus and Seifert (2013); their sim-
ulations are also used in this study. The simulated domain
size is Dx ×Dy×Dz = 51.2× 51.2× 4.0 km. A period
of 48 hours is simulated, considered long enough for the
spatial organization to take place. Full three-dimensional
fields are stored at 8 hour intervals. The LASSO cases

have been resimulated with the MESOHH code (van Heer-
waarden et al. 2018), using the WRF-based prescribed
large-scale forcings and boundary conditions that are part
of the LASSO Alpha 2 dataset (Gustafson et al. 2017a).
Compared to the standard LASSO simulations the hori-
zontal domain size is extended to 25.6 km in the resimula-
tions in order to maximize the domain-range available for
the subdomain analysis of CSDs.

Although two different LES codes are used, the experi-
ment setups share some important aspects. A spatial reso-
lution of 25× 25× 25 m is always applied, as is adaptive
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FIG. 3: Simulated and observed total cloud cover for the
5 LASSO cases investigated in this study. TSI is an esti-
mate of the total sky cover and is only available during day
time, while ARSCL represents a cloud cover as diagnosed
over only the lowest 5km. The grey bars denote the period
before sunrise and after sunset.

time-stepping. Both the UCLA-LES and the MICRO-HH
codes apply the Smagorinsky scheme for subgrid trans-
port of momentum, energy and heat, and both make use of
the warm-cloud double-moment microphysics scheme of
Seifert and Beheng (2001). Horizontally periodic bound-
ary conditions are applied, as well as a sponge-layer in the
top third of the domain to dampen any gravity waves. A
prescribed surface temperature is used in both the RICO
and LASSO cases, the only difference being the presence
of a diurnal cycle in the latter.

The evolution of the simulated cloud population for the
RICO case is illustrated in Fig. 1, showing the vertically
projected cloud mask at each storage timepoint. The cloud
field at the first two time-points still looks more or less ho-
mogeneously distributed, but increasingly the cloud field
becomes more organized, with large cloud structures ap-
pearing after about one day of simulation. Figure 2 shows
the same for the LASSO 20160518 case, revealing the
distinct diurnal evolution of the cloud population. The
spacing between the largest clouds increases during the
day, likely reflecting the continuous ongoing deepening
of the boundary-layer that is typical of such diurnal cy-
cles (Brown et al. 2002; Zhang et al. 2017). Organization
in the cloud field becomes apparent during the final pe-
riod, with small clouds increasingly clustering around the
larger ones, being separated by large areas without any
cloud mass. This may be related to the decay of largest
clouds at the end of the day, when the surface forcing of
the turbulence weakens.

To provide further confidence in the realism of the sim-
ulations the LES cloud cover for the five LASSO cases is
compared to two ARM observational products. The AR-
SCL value-added product (Clothiaux et al. 2000, 2001)
combines lidar and radar measurements, while the Total
Sky Imager (Kassianov et al. 2005) retrieves cloud cover
from wide-angle imagery. The comparison for the five
cases is shown in Fig. 3, only showing daytime hours.
While some differences exist between the two measure-
ments, they agree reasonably well on the general evolution
and amplitude of the cloud cover. The model does repro-
duce these trends, however the amplitude seems to be a
bit underestimated. This slight bias has been revealed in
other recent LES evaluation studies at supersites (Schalk-
wijk et al. 2015; Zhang et al. 2017). In addition, on 18
May and 18 August the LES seems to underestimate cloud
cover in the morning, which we speculate is due to either
i) high altitude cloudiness or ii) spin-up effects. Despite
these minor shortcomings, the results do suggest that the
experiment setup captures the prototype diurnal variation
in cloudiness present in the observations to a reasonable
degree, as well as its modulation due to large-scale forc-
ing. This agreement suggests the simulations are repre-
sentative of nature, and justifies their use for subsequent
cloud studies.

b. Deriving cloud size distributions

Cloud size distributions can be derived in many ways,
involving choices concerning what defines a cloud and its
size. In this study a simple definition is adopted, to be
applicable to both observed and simulated cloud popula-
tions, and that allows using past data records as much as
possible. The first simplification is to disregard cloud life-
cycles, by only analyzing standalone instantaneous three-
dimensional fields. Often the time-frequency of observa-
tions of cloud populations is simply too low to allow de-
tection of cloud life-cycle properties. Also, we hypothe-
size that the CSD-internal variability should already be de-
tectable in instantaneous snapshots. The second choice is
to use the presence of any cloud condensate mass to label a
gridbox as cloudy or non-cloudy. This allows the analysis
to be used with any LES simulation, no matter how com-
plex its representation of cloud microphysics. The third
choice is to define cloud size as the square-root of the pro-
jected area fraction of the object defined on the 3D grid.
This choice is made to allow comparison to previous CSD
studies which often relied on this definition.

In practice the “cusize” algorithm is applied as de-
scribed by Neggers et al. (2003) to investigate diurnal cy-
cles in the CSD. Given a 3D field of cloud mask, first all
objects are identified that consist of neighboring cloudy
gridboxes and which are separated by clear air. The size of
each object is then established as the square-root of its pro-
jected cloud cover. These are then sorted into a histogram
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a) b)

FIG. 4: Cloud number densities N for a) the RICO case and b) the LASSO 20160518 case, as derived from the full-
domain LES fields. Each line represents a single instantaneous 3D cloud field, with t its timepoint in hours. The clouds
were sorted in histograms using a constant bin-width of 25 m, matching the LES resolution.

of cloud number N(l), yielding the CSD N (l) defined as

N (l) = N(l) dl−1, (1)

with dl the width of the size-bins. As illustration the re-
sulting size densities of cloud number in log-log space for
the RICO case and the LASSO 20160518 case are shown
in Fig. 4. Each line represents a single instantaneous 3D
field. The typically observed behavior that cumulus cloud
occurrence sharply decreases with size is also evident in
these cases, as expected. The RICO case shows power-
law scaling in the size-range l < 300m, above which the
CSD decreases more rapidly with size. The first cloudy
hours in the LASSO case also has this shape, but as time
progresses the slope of the CSD becomes more constant
across the covered size-range. Note that a higher vertical
position in the frame corresponds to a larger number of
clouds, due to the use of non-normaliued densities. In the
LASSO case, cloud number strongly increases across the
spectrum after cloud onset, and decreases again towards
the end of the day. What both cases share is the increas-
ing spread on the vertical axis (number density) towards
the larger sizes, in the right tail. This spread, from now on
referred to as CSD-internal variability or stochastic vari-
ability, is the main focus of this study.

c. Subdomain analysis

The subdomain analysis method used by Dorrestijn
et al. (2013) to investigate the scale-dependence of tur-
bulent transport is applied here to cloud number N. To

this purpose the full horizontal LES domain Dx ×Dy is
first subdivided into small square subdomains of horizon-
tal size L0 = 1.6 km. This basic size was chosen to still
contain a sufficient number of gridpoints on a horizontal
slice (642), but on the other hand to still be significantly
smaller than the typical neighbor spacing of large cumulus
clouds (Joseph and Cahalan 1990). Also, with this value
of L0 the full domain size is exactly covered for both the
RICO and LASSO cases.

The next step is to define a set of bigger square subdo-
mains of size L that consist of multiple adjacent smallest
subdomains L0,

L = n L0, (2)

with n ∈ {1,2,4,8,16} for LASSO and n ∈
{1,2,4,8,16,32} for RICO. This yields K subdomains of
size L, with

K =

(
Dx

L

)2

=

(
Dy

L

)2

. (3)

In each of these K subdomains, indexed by subscript k, the
number of clouds N of size l are then counted, indicated as
Nk(L, l). In this process no cloud is counted twice; in other
words, should a cloud object cross subdomain boundaries
then the cloud is included in the count for the subdomain
in which it is identified first. As a result, the sum of Nk
over all subdomains always exactly equals the total cloud
number counted for the full domain.
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a) b) c)

d) e) f)

FIG. 5: The normalized cloud number density N∗ for the first RICO snapshot (t = 8hr) calculated for various subdomain
sizes. The densities are plotted as a two-dimensional PDF in (l,N∗) space. The shading indicates the probability of
occurrence among the subdomains, normalized such that the most frequently occuring value of N∗ at a given value of
l has a value of 1 (red). The curved dotted line is the least squares fit of a powerlaw-exponential function to the full
domain CSD, while the horizontal dotted line indicates the value of a single cloud in the average subdomain, calculated
as
(
∑l N(L, l)dl

)−1.

With Nk known this finally allows calculating the mean
cloud number per subdomain, N(L, l), as well as the asso-
ciated standard deviation σ(L, l),

N(L, l) =
1
K

K

∑
k=1

Nk(L, l) (4)

σ(L, l) =

(
1
K

K

∑
k=1

[
Nk(L, l)−N(L, l)

]2) 1
2

(5)

Equation (5) expresses how variable the number of clouds
of a certain size l is when considering subdomains of size
L. The variable σ is thus a measure of the CSD-internal
variability, visible in Fig. 4 as the vertical spread in the
right tail of the CSD. In practice, it is only interpreted for
K ≥ 4 to ensure statistical significance. It is important to
note that this definition of σ accounts for the impact of no
clouds occurring in a subdomain (i.e. Nk = 0). This has
the potential to significantly increase σ in situations when
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the subdomain size is of the same order of magnitude as
the cloud spacing, as will be illustrated later.

3. Results

a. Number densities in subdomains

Figure 5 shows a subdomain analysis of the size density
of the number of clouds (the “number density”) of the first
3D snapshot from the RICO case. By visual comparison
in Fig. 1 this cloud field shows the lowest degree of spa-
tial organization, so that the CSD-internal varibility will
be predominantly due to subsampling. Unlike the CSDs
as shown in Fig. 4 the data are now plotted not as his-
tograms but as a two-dimensional PDFs in (l,N∗)-space.
The normalized size density for subdomains N∗(L, l) is
obtained by dividing N(L, l) by the average total number
of clouds in a subdomain of size L,

N∗(L, l) =
N(L, l)

∑l N(L, l)
dl−1, (6)

Normalized number densities are commonly used in stud-
ies of cumulus cloud population, an advantage being that
per definition the integral of N∗ with l always adds up
to 1. As a result, in (l,N∗)-space the vertical position
of the density is preserved for subdomain size, which fa-
cilitates their comparison. The two-dimensional PDF is
created by sorting the number densities of all subdomains
onto a 100x100 histogram in the log-log range shown. The
shading reflects the relative probability of occurrence of a
value of N∗ among the subdomains for a given value of
l, with red marking the value that occurs most. Two lines
are added for reference; a powerlaw-exponential fit on the
full domain CSD as proposed by Ding et al. (2014), and
a horizontal line indicating the value of a single cloud oc-
currence in the average subdomain. As a result of the use
of the normalized number density on the y-axis, the single
cloud value increases with smaller L due to the decreasing
number of clouds present in the subdomain.

The first panel in Fig. 5 shows the analysis for n = 32,
so that the subdomain equals the full domain. As a result,
the plotted data is equivalent to that shown in Fig. 4a. A
few aspects catch the eye. First, the powerlaw-exponental
fit well captures the shape of the CSD in this case. Second,
the horizontal spacing in the left tail of the PDF reflects the
horizontal discretization of the LES, allowing only a few
specific cloud sizes. Third, the vertical spread in the data
increases towards the largest sizes, which is an expression
of an increase in the CSD-internal variability. Also, the
data tends to organize along horizontal lines, with the low-
est line of points (with lowest N∗ value) coinciding with
the single-cloud line. This implies that only one cloud ob-
ject of this size is present in the domain.

The following panels show the analysis for decreasing
subdomain size L, for n ∈ {16,8,4,2,1}. With decreasing

FIG. 6: The probability P that no clouds are present in a
subdomain, as a function of cloud size l, for a range of
subdomain sizes L.

L the single cloud line starts to intersect the full domain
fit at ever smaller l. To the right of the intersection size
the points in the PDF are situated at the single cloud line,
which thus again acts as a minimum possible value of N∗.
For the smallest domain size L= 1.6 km only N = 2, N = 3
and N = 4 occur. This behavior can be explained by the
subdomain becoming comparable or even smaller than the
cloud spacing, so that sometimes no clouds are present in
it. This binary-like occurrence of clouds can significantly
boost the variance σ2 at these sizes. More insight is pro-
vided by Fig. 6, showing the probability to encounter a
cloud-free subdomain. In general, this probability is high-
est for the largest clouds and lowest for the smallest, a re-
sult which supports this hypothesis. This transition shifts
with decreasing subdomain size L, with no-cloud occur-
rences becoming more frequent at smaller l. At small-
to-intermediate L the transition is gradual, while for large
L the transition is abrupt, almost binary. From these re-
sults one concludes that the no-cloud occurrence and its
impact on the internal variability of the CSD is in prin-
ciple a stochastic behavior, reflecting the subsampling of
populations.

b. Stochastic variability

The next step is to quantify the internal variabilty of the
CSD due to subsampling as analyzed in the previous sec-
tion. This is achieved by calculating the variance in cloud
number σ2 for all cloud- and subdomain sizes, as defined
by (5). To make sure that the results will only reflect sub-
sampling, again the first RICO timepoint (t=8hr) is used
that shows the least signs of spatial organization. Figure
7a shows σ normalized by the average cloud number per
subdomain N as a function of subdomain size L. Data
points are equidistant in the horizontal due to the set of n-
values that was chosen. For all cloud sizes a well-defined
monotone relation exists between these variables in log-
log space, indicating a strong powerlaw scaling. Variabil-
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a) b)

FIG. 7: Log-log plot of the normalized standard deviation in cloud number for the first snapshot (t = 8hr) of the RICO
case, plotted as a function of a) subdomain size L and b) subdomain size divided by cloud size L/l. A selection of sizes
across the spectrum is shown, as indicated by the colors. The dotted line represents a fit of the baseline model for the
impact of subsampling on cloud number variability with b =−1, as discussed in Section 3c.

ity in cloud number also increases with cloud size, shifting
the relation vertically in a fairly equidistant way, leaving
the slope unaffected. In general the relation is best de-
fined at the smaller domain sizes, but shows more noise
at the larger subdomain sizes. This is caused by the num-
ber of subdomains K as used in the variance calculation
decreasing quadratically with domain size (e.g. K = 4 at
L = 0.5D).

The fact that the powerlaw scaling is similar for all
cloud sizes, and that the lines of constant cloud size are
more or less equidistant in the vertical, motivates refor-
mulation in terms of two dimensionless groups. Figure
7b shows the same log-log plot but now with subdomain
size L divided by cloud size l. This transformation yields a
data collapse. A first order estimation of the slope suggests
a powerlaw exponent b = −1, a fit of which indeed cap-
tures the dependence to a high degree (dotted line). This
dependence reflects an inverse linear relation between the
dimensionless groups (σ/N) and (L/l).

c. The impact of subsampling

What could explain the dependence of the CSD vari-
ability on both the subdomain size L and the cloud size l?
Let us first consider the inverse linear dependence on L.
One expects the variability in the cloud number present in
a subdomain N to be significant when L is of the same
order of magnitude as the spacing between the clouds.

This can be understood from considering the hypotheti-
cal case of a population of clouds of a single size l which
is regularly distributed horizontally, with each cloud and

L

l

sl

FIG. 8: Schematic illustration of the subsampling of an
equally spaced single-size cloud population. The red box
indicates the subdomain of size L, while the blue grid-
boxes represent the spatial unit occupied by a single cloud
and its spacing ls. Variables are explained in the text.
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a) b)

FIG. 9: a) Same as Fig. 7a but now showing only a single cloud size l = 25 m as a function of time in the RICO case.
b) Powerlaw exponent b as a function of cloud size and time in the RICO case, resulting from linear fits in log(σ/N),
log(L/l) space.

the cloud-free area around it occupying a “unit area” of
spacing size ls. This situation is illustrated in Fig. 8. A
subdomain is considered that covers a number of cloud-
containing units, some of which partially (illustrated here
as one row and one column at the edge). In this situation
the number of clouds in subdomain Nk can be written as

Nk =

(
L
ls

)2

±O

(
L
ls

)
. (7)

The first term on the right-hand-side is a quadratic func-
tion of L, and represents the number of clouds included
in the subdomain that one expects statistically after many
subdomains are considered, and is conceptually equal to
N. In contrast, the second term is a linear function of L,
and represents the number of clouds near the subdomain’s
edges that may or may not be situated inside its area. For
the schematic cloud scene shown in Fig. 8 with L = 3.5ls
this gives Nk = 12.25± 3.5, implying that the number of
clouds in a single arbitrary snapshot can be anywhere be-
tween 9 and 16. The larger L/ls, the smaller the remain-
der term relative to the quadratic term, and the smaller the
variation in the estimate of Nk. This corresponds to a less
subsampled cloud population. What this implies for the
cloud number variance σ2 can then simply be understood
by substituting (7) in (5), which gives

σ = O

(
L
ls

)
, (8)

where the quadratic term has disappeared because of the
appearence of N in the definition of variance, so that only

the linear “boundary effect” term remains. Finally normal-
izing by the average cloud number N yields

σ

N
∝

(
L
ls

)(
L
ls

)−2

=

(
L
ls

)−1

. (9)

This proportionality explains the inverse linear depen-
dence of the normalized standard deviation in cloud num-
ber on the subdomain size that is purely due to subsam-
pling. The powerlaw-exponent of −1 can thus be consid-
ered a baseline model for this process.

What is also clear is that the effect of subsampling is
first experienced by larger clouds. We speculate that this
is explained by the observation that larger clouds typically
having larger spacing ls (Joseph and Cahalan 1990). The
relation between l and ls could carry some dependence on
the cumulus regime, but also critically depends on how
the cloud size l and the neighbor spacing ls are exactly
defined. More research for more cumulus cases is needed
to gain insight.

d. The impact of spatial organization

The analysis is now repeated for all six RICO fields,
which become increasingly organized as time progresses,
as shown in Fig. 1. The time-evolution of the relation be-
tween σ/N and L is shown in Figure 9a, first for a single
cloud size (l = 25m). In general the variability increases
with time, already suggesting that some process is affect-
ing the occurrence of the smallest clouds on the grid. Most
importantly, the increase in variability is not uniform, but
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a) b)

c) d)

e) f)

FIG. 10: Same as Fig. 9b but now for the LASSO 20160518, 20160619, 20160625, 20160716 and 20160818 cases. a) -
e) Each case individually, and f) composite average of all five cases. Non-simulated time-periods are shaded light-grey.

its amplitude increases with subdomain size L. Powerlaw
scaling is still evident at all timepoints, but with an in-
creasingly reduced exponent. This means that, especially
at larger L, the variance in the number of small clouds is
larger than can be expected from pure subsampling effects,
as expressed by the b =−1 baseline model.

More insight is provided by Fig. 9b, showing the pow-
erlaw exponent for all cloud sizes l as a function of time.

Two features stand out. First, the maximum cloud size in
the domain increases with time, approaching 10 km at the
t = {24,32} hr timepoints. This reflects the emergence of
large cloud structures as visible in Fig. 1, although their
number is still very small. Second, the impact of the spa-
tial organization in the population on the powerlaw expo-
nent appears limited to the smaller end of the distribution,
and gradually disappears above about l = 250m. These
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FIG. 11: Same as Fig. 7b but now including all snapshots from all 6 cases. All clouds with sizes l > 250m are included.
The dashed line is a least-squares fit of the function F = F0 + blog(L/l) to the composite data, yielding b = −0.92 at
F0 = 1.2. For reference, the fit of the baseline model with prescribed b = −1, as already shown in Fig. 7b, is also
included (dotted line).

two findings suggest that spatial organization apparently
affects both ends of the CSD. On the one end the size of
the largest cloud increases, while on the other the vari-
ability in the number of small clouds is enhanced. This
reflects that small clouds ”live” on top of larger structures
(e.g. cold pools), favoring or inhibiting their formation.

To investigate the robustness of the impact of spatial
organization on the CSD variability the analysis is now re-
peated for all LASSO cases, as shown in Fig. 10a-e. The
time-evolution of the CSD is similar in all LASSO cases,
with a gradually increasing maximum cloud size in the pe-
riod after cloud onset A reduction in the powerlaw expo-
nent at the smaller cloud sizes is also present, however it is
only visible towards the end of the day. A clear difference
with the RICO case is the much shorter time-span during
which this happens. This suggests that the physical pro-
cess of spatial organization causing this behavior is of a
slightly different nature. After inspecting the cloud mask
fields in Fig. 2 one notices that towards the end of the day
small clouds start to surround the bigger clouds in the pop-
ulation. One speculates that this is caused by big clouds
falling apart, towards sunset when turbulence dies. In that
sense one expects that this behavior is a typical and pro-
totype feature of diurnal cycles of shallow cumulus over

land. This motivates compositing the five cases to enhance
the statistical significance, as shown in Fig. 10f. The com-
positing indeed makes the contoured field smoother. In
addition, the compositing emphasizes that the reduction
of the powerlaw exponent in the last hours of convective
cloud existence is a robust feature.

4. Discussion

The results obtained so far for the RICO and LASSO
cases suggest that the impact of spatial organization on
the variability in cloud number is superimposed on the im-
pact of subsampling alone. Two different mechanisms of
spatial organization have been encountered in this study,
including cold pool dynamics in the RICO case and cloud
decay in the LASSO cases. But apparently the impact of
subsampling always takes place in the same way. This is
further illustrated by Fig. 11, showing the scaled variances
of all timepoints from all cases in one frame. All cloud
sizes l > 250 m are included, thus excluding the size range
that is most affected by organization in the cases consid-
ered. Combining all fields from all cases still yields a data
collapse for this size-range. A powerlaw fit is included in
Fig. 11 (dashed line), yielding b = −0.92 which is very
close to the baseline model of b = −1 as formulated in
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Section c (dotted line). This result suggests that the base-
line model for the impact of subsampling on the variability
in the cumulus CSD is indeed generally applicable.

This motivates expressing the CSD-internal variability
in terms of two dimensionless groups,(

σ

N

)
= a

(
L
l

)b

(10)

with exponent b written as

b =−1+F (Org). (11)

The baseline value of b = −1 exclusively reflects the im-
pact of subsampling due to a too small subdomain size.
On top of this baseline exponent the impact of the degree
of spatial organization in the population is then superim-
posed, through an extra term depending on the degree of
organization. While the latter dependence still needs to be
established, one option could be the Org parameter as pro-
posed by Mapes and Neale (2011). Parameter a, used here
as constant of proportionality to fit scaling relation (10) to
the LES data, effectively translates the relation vertically
in loglog space. A shift in this parameter thus reflects an
overall change in the variability for all subdomain sizes;
if this carries an additional dependence on Org is still un-
clear, and requires more research.

The scaling relation (10) has various potential uses. For
example, it can inform the development of parameteriza-
tions in the grey zone, by acting as a benchmark relation
that stochastic parameterizations of cumulus cloud popu-
lations have to reproduce. This is in particularly applicable
to schemes that are formulated in terms of reconstructed
CSDs. Complex population dynamics models might let
the number density grow from interaction between sizes,
while simpler ones using assumed functional forms for
the CSD could have the impact of subsampling and spa-
tial organization as established in this study superimposed.
Regardless of the design of the stochastic parameteriza-
tion, they can be called succesful when they reproduce the
b = −1 scaling for unorganized cloud populations in the
grey zone of convection.

The results obtained in this study highlight the impor-
tant role of cloud spacing in controlling the stochastic vari-
ability. Normalizing subdomain size by cloud size yields
a data collapse in the scaled variance, argued here to re-
flect that cloud size is proportional to the cloud spacing.
The data collapse suggests that the relation between cloud
size and cloud spacing could be pretty robust. More re-
search is needed to confirm and quantify this proportion-
ality. Previous observational studies have indeed hinted at
its existence in nature (e.g. Joseph and Cahalan 1990; Sen-
gupta et al. 1990), but typically these relations still carried
considerable scatter. In addition, the definition of cloud
spacing used in most previous studies is not equivalent to
what is used in this study, which is the spacing between

clouds of equal size. Exploring both observed and sim-
ulated datasets to investigate various definitions of cloud
spacing is a future research topic.

This study also sheds more light on the nature of spatial
organization in shallow cumulus cloud fields. Two types
were encountered in the cases covered, including cold pool
formation in the marine case and large cloud decay in the
diurnal cycle cases. While this study does not explain how
the organization takes place, what the results do reveal is
that both types of spatial organization are associated with
a similar shift in the powerlaw exponent in the relation be-
tween (σ/N) and (L/l). Perhaps this shared behavior is
something typical for spatial organization. But more cases
need to be investigated before being able to claim general
applicability of this behavior, for example for deeper pre-
cipitating convection.

Some aspects of our analysis can affect the scaling.
The first is numerical and concerns the LES discretiza-
tion, which could artificially affect the variability of the
smallest clouds. This is investigated in more detail in the
Appendix. We find thaat while the powerlaw scaling in
the cloud number variability (slope) is unaffected, the am-
plitude increases at cloud sizes smaller than 4× ∆x. A
close proximity to discretization thus slightly enhances the
variability in clouds number. Note that these numerically
affected clouds were not included in the fitting exercise
shown in Fig. 11. Nevertheless, because the spatial orga-
nization affects the smallest clouds most, additional sim-
ulations at even higher resolution are still advisable to in-
vestigate at which point convergence takes place. A sec-
ond important aspect concerns the definition of cloud size,
for which more complex alternatives can be used. For ex-
ample, cloud objects could be tracked through time, which
might change how their variability behaves. Perhaps this
study, based on a simple definition of size, can serve as a
starting point for such analyses.

5. Summary, conclusions and outlook

The main results of this study can be summarized as
follows:

• Multiple three-dimensional snapshots from various
large-domain LES simulations of marine and conti-
nental shallow cumulus cases are used to investigate
the behavior of variability in cumulus cloud number
due to subsampling and spatial organization;

• Strong powerlaw scaling is found in the relation be-
tween cloud number variability and subdomain size,
reflecting an inverse linear relation;

• Cloud spacing as a function of cloud size is a crucial
parameter, explaining the data collapse across cases
and timepoints;
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• The impact of spatial organization on the variabil-
ity in the CSD is found to act on top of this base-
line model by enhancing its amplitude, in particular
at the smaller cloud sizes. The powerlaw scaling is
still preserved but with a reduced exponent. This im-
pact reflects that the small clouds start to live on top
of larger-scale structures, favoring or inhibiting their
formation;

• Compositing all continental cumulus cases suggests
the existence of a prototype diurnal time-dependence
in the spatial organization, partially reflecting the de-
cay of large convective cumulus clouds towards sun-
set;

• A simple expression for the CSD-internal variabil-
ity is proposed that is formulated in terms of two di-
mensionless groups, and which captures the impact
of both subsampling and spatial organization.

The subdomain analysis adopted in this study needs to
be repeated for many more cumulus cloud scenes, in order
to broaden the parameter space of environmental large-
scale conditions and thus enhance the statistical signifi-
cance of the obtained results. This is required to better
calibrate constants of proportionality, and also to better
understand the nature of spatial organization in cumulus
cloud populations. Of particular relevance is the behav-
ior of nearest neighbor spacing between clouds of a cer-
tain size, as this dependence is at the foundation of the
scaling relation found in this study. In an ongoing effort
by the authors, data from super-large-domain LES exper-
iments with the new Icosahedral Non-hydrostatic (ICON,
Zängl et al. 2015) model in the Carribean dry season are
used to this purpose. In addition, existing observational
datasets of shallow cumulus cloud populations are revis-
ited to seek observational support for the scaling found in
the simulations. These data consist of satellite imagery as
well as data from cloud-detecting ground-based imaging
and remote sensing instrumentation at the ARM SGP site.
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FIG. A1: Same as Fig. 7b but now showing clouds with
l < 250 m.

APPENDIX

Impacts of discretization

In Fig. A1 the variance scaling is investigated for cloud
sizes smaller than 10× the LES discretization. For the
clouds smaller than about 4×∆x the scaling relation starts
to be situated above the baseline model (dotted line), but
remains more or less parallel. This implies that at sizes
near the discretization scale the CSD variability is some-
what larger than can be expected from subsampling alone.
We speculate that this numerical artefact reflects on-off
cloud behavior in single gridboxes that artificially boosts
the variability in their number. However, most impor-
tantly, the powerlaw exponent is more or less unaffected
by the proximity to discretization, meaning that the scal-
ing is maintained even for barely resolved clouds.
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