Transregional Collaborative Research Centre TR 172

Hunting High and Low:

Measuring Arctic Amplification with an Icebreaker, Two Airplanes, Several Ground-Based Instruments

and Three Dozens Scientists

E.M. Knudsen, B. Heinold, S. Dahlke, H. Bozem, S. Crewell,G. Heygster, D. Kunkel, M. Maturilli, M. Mech, A. Rinke,H. Schmithüsen A. Ehrlich, A. Macke, C. Lüpkes and M. Wendisch

GFI/BCCR Seminar, Bergen June 4, 2018

Knudsen, E.M. et al. (2018), Synoptic development during the ACLOUD/PASCAL field campaign near Svalbard in spring 2017, *Atmos. Chem. Phys. Discuss.*, doi:10.5194/acp-2018-494¹.

TRANSREGIO TR 172 | LEIPZIG | BREMEN | KOLN

UNIVERSITÄT LEIPZIG

Universität Bremen

Outline

- Introduction and data
- Time series variability
- Key period characteristics
- Climatological context
- Conclusions

me Series

Key Period

Climatology

Introduction and Data

Intro/Data

ime Series

Key Per

s Climat

itology C

Introduction

The ACLOUD campaign:

- Arctic CLoud Observations Using airborne measurements during polar Day
- May 23 June 26, 2017

Intro/Data

- Aircrafts Polar 5 and Polar 6
- Aimed to further understand the role Arctic clouds play in the rapidly.

changing Arctic climate system

LYR: Airport base 76°N Longyearbyen. NYA: Instrument base Ny-Ålesund. 74°N

The PASCAL campaign:

- Physical feedbacks of Arctic planetary boundary level Sea ice, Cloud and AerosoL
- May 28 June 18, 2017
- Icebreaker Polarstern
- Aimed to further understand the Arctic energy budget and its

interaction with clouds and aerosols

PSo & PSi : Ocean-cruising and ice-attached Polarstern.

Data

Spatial and temporal frames:

- The Nordic Seas, with a special focus on the Fram Strait
- May 23 June 26, 2017

Surface-based measurements:

 Near-surface meteorological and radiosonde data from Ny-Ålesund (AWIPEV; 79°N, 12°E)^{5,6,7,8,9} and Polarstern (AWI; ocean-cruising > 67°N and ice-attached 82°N, 10°E)^{10,11}

Models:

- Reanalysis data from ERA-I¹⁶
- Analysis data to FLEXPART¹⁷

Intro/Data

Satellites:

- Sea ice data from UB^{2,12}, NSIDC³ and OSI SAF¹³
- Snow data from NSIDC¹⁴
- Cloud data from IASI¹⁵

Wendisch et al. (submt.)4

Time Series Variability

Intro/Data

Time Series

Key Period

Climatolo

Time Series from Near-Surface Meteorological Observations

Time Series from Radiosonde Observations

Time Series of Marine Cold Air Outbreaks (MCAOs)

Three key periods:

1. The cold period (CP): May 23–29, 2017 (7 days)

Time Series

- 2. The warm period (WP): May 30 June 12, 2017 (14 days)
- 3. The normal period (NP): June 13–26, 2017 (14 days)

Key Period Characteristics

Intro/Data

lime Series

Key Periods

Climatolog

Key Period Air Mass Distribution

Intro/Data

me Series

Key Periods

Climatolog

Key Period 700-hPa Atmospheric Circulation and Thermodynamics

Key Period Sea Ice Dynamics

Key Period Cloud Cover Fractions

Highest coverage (85 % in boxed area), especially over the open ocean, dominated by low-level clouds Lowest coverage (65 % in boxed area), especially over the sea ice, dominated by mid-level clouds Medium coverage (80 % in boxed area), with large spread, dominated by mid-level clouds

Intro/Data

ne Series

Key Periods

Climatolo

Climatological Context

Intro/Data

ime Series

Key Period

Climatology

Climatologically Anomalous Events

- 5 events 1998–2016, 1 in 2017
 - 2017 event strong, lasting 7 days with an intensity of 4.7 K

- 19 events 1998–2016, 2 in 2017
 - 2017 events moderate, lasting 6-7 days with intensities of 9.1–10.3 K

ro/Data Time Series Key Periods Climatology Conclusion

Comparison to Other Arctic Campaigns

Snow melt season onset:

- SHEBA (1997/98) around May 30²¹, TARA (2006/07) around June 9²²
- ACLOUD/PASCAL around May 29

Atmospheric circulation:

- AOE-96 (1996) and AOE2001 (2001) mainly cyclonic, ASCOS (2008) anticyclonic²¹
- ACLOUD/PASCAL cyclonic during CP and anticyclonic during WP

Temperature range:

- N-ICE2015 (2015) about [-10,2]°C²³
- ACLOUD/PASCAL about [-3,6]°C

Data Time Series Key Periods Climatology

Conclusions

Intro/Data

ime Series

Key Peri

Climato

Conclusions

Conclusions

Thank you for your attention!

- Synoptic development during the ACLOUD airborne and PASCAL ship-based field campaigns May 23 – June 26, 2017
- Short-term variability in atmospheric circulation dominated over the long-term forcing of the Arctic amplification
- Three key periods:
 - The cold period (CP; May 23–29, 2017; 7 days), characterized by cold and dry Arctic air from the north associated with widely covering low-level clouds
 - The warm period (WP; May 30 June 12, 2017; 14 days), characterized by warm and moist maritime air from the south and east associated with less covering mainly mid-level clouds
 - 3. The normal period (NP; June 13–26, 2017; 14 days), characterized by close-to-average temperate and moist air from a mixture of regions associated with a mix of earlier cloud conditions

References

Intro/Data

Time Series

Key Peri

iods Cli

Climatology

References

- 1. Knudsen, E.M. (2018), Synoptic development during the ACLOUD/ PASCAL field campaign near Svalbard in spring 2017, *Atmos. Chem. Phys. Discuss.*, doi:10.5194/acp-2018-494.
- 2. Spreen, G. et al. (2017), Sea ice concentration, https://seaice.uni-bremen.de/sea-ice-concentration/
- 3. Fetterer, F. et al. (2018), Sea ice index, version 3, https://nsidc.org/data/G02135/versions/3
- 4. Wendisch, M. et al. (submt.), The Arctic cloud puzzle: Using ACLOUD/PASCAL multi-platform observations to unravel the role of clouds and aerosol particles in the Arctic amplification, *B. Am. Meteorol. Soc.*
- 5. Maturilli, M. et al. (2013), Climatology and time series of surface meteorology in Ny-Ålesund, Svalbard, *Earth Syst. Sci. Data*, **5**, 155, doi:10.5194/essd-5-155-2013.
- Maturilli, M. (2015), Surface radiation climatology for Ny-Ålesund, Svalbard (78.9° N), basic observations for trend detection, *Theor. Appl. Climatol.*, **120**, 331–339, doi:10.1007/s00704-014-1173-4
- Maturilli, M. (2017a), High resolution radiosonde measurements from station Ny-Ålesund (2017-05), PANGEA, doi: 10.1594/PANGAEA.879820.
- Maturilli, M. (2017b), High resolution radiosonde measurements from station Ny-Ålesund (2017-06), *PANGEA*, doi:10.1594/PANGAEA.879822.

- 9. Maturilli, M. & Kayser, M. (2017), Arctic warming, moisture increase and circulation changes observed in the Ny-Ålesund homogenized radiosonde record, *Theor. Appl. Climatol.*, **130**, 1–17, doi:10.1007/s00704-016-1864-0.
- 10. Schmithüsen, H. (2017a), Meteorological observations during POLARSTERN cruise PS106.1 (ARK-XXXI/1.1), *PANGEA*, doi: 10.1594/PANGAEA.882736.
- 11. Schmithüsen, H. (2017b), Upper air soundings during POLARSTERN cruise PS106.1 (ARK-XXXI/1.1) on 2017-05-27, *PANGEA*, doi: 0.1594/PANGAEA.882616.
- 12. Spreen, G. et al. (2008), Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophys. Res.-Oceans, **113**, C02S03, doi:10.1029/2005JC003384.
- 13. Lavergne, T. et al. (2010), Sea ice motion from low-resolution satellite sensors: An alternative method and its validation in the Arctic, *J. Geophys. Res.-Oceans*, **115**, C10032, doi:10.1029/2009JC005958.
- Markus, T. et al. (2009), Recent changes in Arctic sea ice melt onset, freezeup, and melt season length, J. Geophys. Res.-Oceans, 114, C12024, doi:10.1029/2009JC005436.
- 15. EUMETSAT (2017), IASI Level 2: Product guide, *EUM/OPS-EPS/MAN/04/0033*.
- 16. Dee, D. et al. (2011), The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, *Q. J. Roy. Meteor. Soc.*, **137**, 553–597, doi:10.1002/qj.828.

tro/Data Time Series Key Periods Climatology Conclusions

References

- 17. Stohl, A. et al. (2005), Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, *Atmos. Chem. Phys.*, **5**, 2461–2474, doi:10.5194/acp-5-2461-2005.
- 18. Papritz, L. et al. (2015), A climatology of cold air outbreaks and their impact on air-sea heat fluxes in the high-latitude South Pacific, *J. Climate*, **28**, 342–364, doi:10.1175/JCLI-D-14-00482.1.
- 19. Kolstad, E. W. (2017), Higher ocean wind speeds during marine cold air outbreaks, *Q. J. Roy. Meteor. Soc.*, **143**, 2084–2092, doi:10.1002/qj.3068.
- 20. Etling, D. (2008), Theoretische Meteorologie: Eine Einführung, *Springer-Verlag*.
- 21. Tjernström, M. et al. (2012), Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS), *Atmos. Chem. Phys.*, **12**, 6863–6889, doi:10.5194/acp-12-6863-2012.
- 22. Vihma, T. et al. (2008), Meteorological conditions in the Arctic Ocean in spring and summer 2007 as recorded on the drifting ice station Tara, *Geophys. Res. Lett.*, **35**, L18706, doi:10.1029/2008GL03468.
- Cohen, L. et al. (2017), Meteorological conditions in a thinner Arctic sea ice regime from winter to summer during the Norwegian Young Sea Ice expedition (N-ICE2015), *J. Geophys. Res.-Atmos.*, **122**, 7235–7259, doi:10.1002/2016JD026034

- 24. Jenkinson, A. & Collison, F. (1977), An initial climatology of gales over the Nordic Seas, *Synoptic Climatology Branch Memorandum*, 62.
- 25. Thompson, D. W. J. & Wallace, J. M. (1998), The Arctic oscillation signature in the wintertime geopotential height and temperature fields, *Geophys. Res. Lett.*, **25**, 1297–1300, doi:10.1029/98GL00950.
- Wu, B. et al. (2006), Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion, *J. Climate*, **19**, 210–225, doi:10.1175/JCLI3619.1.
- 27. Wang, J. et al. (2009), Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent?, *Geophys. Res. Lett.*, 36, L05706, doi:10.1029/2008GL036706.

Intro/Data

l ime Serie

Key Period

Climatolo

Additional Figures

Intro/Data

ime Series

Key Perio

climate

logy Conc

Time Series of Inversions from Polarstern

- Until May 30, ABL high and few inversions
- After this, ABL height [100,800] m and almost continuous inversions
 - ABL thick → lifted temperature inversion,
 ABL shallow → surface-based temperature inversion

Intro/Data Time Series Key Periods Climatology Conclusions

Time series of Cloud Cover Fractions and Top Pressures

Cloud cover fraction

Cold period (CP):

- Highest coverage, lowest clouds
- Low variability

Warm period (WP):

- Lowest coverage, highest clouds
- **High variability**

Normal period (NP):

- Similar to WP, but...
- ...higher coverage and more high-clouds

Time Series of Circulation Weather Types (CWTs)

- N-NW CWT dominated over Ny-Ålesund first 5 days, then 4 days NE
- Anticyclonic and W CWTs over Ny-Ålesund and Polarstern June 2–13
 - N CWT over Ny-Ålesund and Polarstern June 14–16
 - CWT varied considerably last 1.5 weeks

Intro/Data Time Series Key Periods Climatology Conclusions

Time Series of Arctic Oscillation and Dipole Indices

- Positive indices before ACLOUD/PASCAL might have contributed to anomalous high sea ice concentration in the Fram Strait
 - Positive indices dominated the cold period (CP) and the normal period (NP), negative indices the warm period (WP)
 - Synoptic development better described by more regional indices

ita 📔 Time Series 📔 Key

ey Periods

Climatology

Key Period Temperature and Humidity Profiles

Temperature

Specific humidity

Cold (< 0°C) and dry (< 2 g kg⁻¹) air

- Near isothermal 900–800 hPa
- Low variability
- ≈ 10°C warming and
 ≈ 1-2 g kg⁻¹ moistening
 below 500 hPa
- Inversions in lowest layer over Polarstern
- Similar features as in the cold period, but
 ≈ 10°C warmer and
 ≈ 1-2 g kg⁻¹ moister

Key Period Cloud Top Pressures

Highest coverage (85 % in boxed area), especially over the open ocean, dominated by low-level clouds Lowest coverage (65 % in boxed area), especially over the sea ice, dominated by mid-level clouds Medium coverage (80 % in boxed area), with large spread, dominated by mid-level clouds

Intro/Data

ne Series

ey Periods

Climatolo

Climatology of Arctic Oscillation and Dipole Indices

Climatology of Snow Melt Onset Dates

1979–2016

- Generally, onset date increase with latitude
- West Spitsbergen Current →
- ≈ 10 days later onset west of the Yermak Plateu

- 10–30 days earlier onset east of the Northeast Water Polynya
 - 10–30 days later onset both west and east of this area