Doppler Wind profiler uncertainty
 in a turbulent atmosphere
 Jan H. Schween
 Inst. f. Geophysics and Meteorology
 University of Cologne

Motivation

- More and more Doppler wind profiler available (radar, sodar, lidar) -> e-prof
- providing wind data to assimilation requires uncertainty estimates
- Current uncertainty estimate consider only Doppler uncertainty - not turbulence

Motivation: large tilt

- To get horizontal wind component beams must be tilted
- The larger the tilt the smaller the uncertainty
- => tilt should be large!

Motivation: small tilt

- Large tilt => large separation => different wind
- Tilt should be small !

\Rightarrow Ist there an optimum tilt ?
\Rightarrow optimal scan ?

Two beams + turbulence

- One vertical and one tilted beam
- Differences in wind speeds due to separation
- Gaussian error propagation
- Separation introduces auto- and cross-covariances between u, u and u, w etc. at the two locations of the vertical beam $\left(r_{1}\right)$ and the tilted beam $\left(r_{2}\right)$:
- If there is upwind at r_{1} there might be also upwind at r_{2}

$$
\Rightarrow C_{w w}\left(r_{1}, r_{2}\right)=\overline{w_{r 1}^{\prime} w_{r 2}^{\prime}} / \overline{w_{r 1}^{\prime 2}}
$$

- If there is upwind at r_{1} horizontal wind speed at r_{1} might be lower

$$
\Rightarrow C_{u w}\left(r_{1}, r_{2}\right)=\overline{u_{r 1}^{\prime} w_{r 2}^{\prime}} / \overline{u_{r 1}^{\prime} w_{r 1}^{\prime}}
$$

assumptions

homogeneity of the turbulent field

$$
=>. . \overline{\overline{u_{s 1}^{\prime 2}}}=\overline{u_{s 0}^{\prime 2}}=\overline{u^{\prime 2}} \text { and } \overline{u_{s 1}^{\prime} w_{s 1}^{\prime}}=\overline{u_{s 0}^{\prime} w_{s 0}^{\prime}}=\overline{\overline{u^{\prime} w^{\prime}}}
$$

- horizontal isotropy for form of $C_{u u}, C_{u w}$ etc.
=> depend only on scalar distance
- All normalized auto- and cross-covariances are the same:

$$
C_{u u}(r)=C_{u w}(r)=C(r)
$$

- Especially the last is a very strong assumption. But we believe deviations are small enough to allow for the use in this uncertainty estimate

Two beams: equation

- Equation for one vertical one tilted beam

$$
\left(\frac{\Delta u_{r s}}{\sigma_{w}}\right)^{2}=\underbrace{\frac{1}{s_{\theta}^{2}}}_{\text {Geometry }} \cdot \underbrace{2\left[1-C\left(r_{01}\right)\right]}_{\text {separation }} \cdot(\underbrace{\left.s_{\theta}^{2} \cdot \frac{\overline{u^{\prime 2}}}{\sigma_{w}^{2}}+2 s_{\theta} c_{\theta} \cdot \frac{\overline{u^{\prime} w^{\prime}}}{\sigma_{w}^{2}}+c_{\theta}^{2}\right)}_{\text {Effect of (co-)variances }}
$$

$$
s_{\theta}=\sin \theta, c_{\theta}=\cos \theta
$$

- Similar equations can be derived for any arbitrary scan pattern

Two Beams:

- $C(r)=\exp (-r / L)$ $r=z \cdot \tan \theta, z=L=300 \mathrm{~m}$, $u u / \sigma_{w}^{2}=1.2, u w / \sigma_{w}^{2}=-0.2$
$>$ geometry factor dominates
$>$ Efect of (co-)variances is small => we do not need to know uw etc. exactly
$>$ Weak Minimum at ${ }^{\sim} 50 \mathrm{deg}$
> uncertainty of 2-tilted beams is smaller than 1tilt+1vertical

Two Beams: Validation

- RHI-> two beams
- 1 tilted 1 vertical
- 2 tilted
- As a $f(\theta, z)$
- Difference to VAD-36
- RMSE over 4days
$>$ Principal form confirmed with very large errors at zenith and decay towards low elevations
>2 tilted is better than 1tilted
> asymmetry for 1tilted beam => inhomogeneity

Many beams: ...

- Increasing the number of beams reduces uncertainty but follows not $1 / \sqrt{N}$ law
- Minimum remains at +/- the same place and stays weak
- Larger zenith angle decreases uncty. but effect diminishes above ~30deg.

Conclusions

- Uncertrainty estimate requires knowledge of
- covariance matrix of the wind,
- spatial auto- and cross-correlations of the wind components
- we solved this with simplifiactions/assumptions
- DBS-3 scan has larger uncertainty than VAD-3
- More beams decrease uncertainty
- but effect is less than $1 / \sqrt{N}$ law and
- diminishes with increasing N
- gain for $\mathrm{N}>12$ is minimal
- Uncertainty decreases with increasing zenith angles
- effect is for $\theta>30^{\circ}$ small
- there is a weak minimum around 55deg at low heights.

Thank you

Acknowledgments: COST-TOPROF, ET-CC (German Excellence initiative Cologne), Guy Pearson, ...

