Transregional Collaborative Research Centre TR 172

ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)³

From Bergen via Cologne to the Arctic

Erlend Moster Knudsen, University of Cologne (Germany)

BCCR/GFI Seminar, Bergen May 16th, 2017

www.ac3-tr.de

TRANSREGIO TR 172 | LEIPZIG | BREMEN | KÖLN

UNIVERSITÄT LEIPZIG

Universität Bremen

Outline

 Background for presentation and research

- The research center
 (AC)³ and field campaign
 ACLOUD
- 3. Personal climate research and communication
- 4. Summary

Why?

Introduction $(AC)^3$ Own work Sum

Motivation for talk

- Personal background from GFI/BCCR and the Arctic
- Relevance for research at BCCR
- May 17th in Bergen

Introduction

Own work

Summary

 Arctic warming > 2 x global warming

- Arctic warming > 2 x global warming
- Toward a blue Arctic Ocean

Northern Hemisphere September sea ice extent

- Arctic warming > 2 x global warming
- Toward a blue Arctic Ocean
- Opening up challenges and opportunities

- Arctic warming > 2 x global warming
- Toward a blue Arctic Ocean
- Opening up challenges and opportunities
- Impact on the climate system

What is $(AC)^3$?

ntroduction $(AC)^3$ Own work Summ

Research center $(AC)^3$

 5 German research institutions + international collaboration

Arcti**C** Amplification: **C**limate Relevant **A**tmospheric and Surfa**C**e Processes and Feedback Mechanisms (*AC*)³

www.ac3-tr.de

Research center $(AC)^{3}$

Research center $(AC)^3$

- 5 German research institutions + international collaboration
- Aim:
 - Improve understanding of processes contributing to Arctic amplification
 - …and how this affects the regional and larger scale climate
- Combining observations and modeling, surface and atmospheric measurements

(AC)³

Years

Seasons

Days

Own work

Summary

Field campaign ACLOUD

- Arctic CLoud Observations
 Using airborne
 measurements during polar
 Day (ACLOUD):
 - May 22 June 28, 2017
 - Based in Longyearbyen
 - Includes an icebreaker, two aircrafts and several surface-based observations

Field campaign ACLOUD

- Set-up:
 - May 22 June 28, 2017
 - Based in Longyearbyen
 - Includes an icebreaker, two aircrafts and several surface-based observations
- Aim:
 - Understand and quantify specific physical parameters in, above and below Arctic clouds

(AC)³

- Outreach:
 - Open ship and aircrafts
 - Drawings and photos
 - Media and video clips

And what do I do?

Introduc

 $(AC)^3$

Own work

Summary

- Role of intense cyclones for precipitation, snow cover and sea ice in the Nordic Seas:
 - ERA-Interim reanalysis OND 1979-2014
 - 6-hourly cyclone tracking and statistics (TRACK)
 - Cyclone-associated precipitation in 5° radius

- Role of intense cyclones for precipitation, snow cover and sea ice in the Nordic Seas:
 - ERA-Interim reanalysis OND 1979–2014
 - 6-hourly cyclone tracking and statistics (TRACK)
 - Cyclone-associated precipitation in 5° radius
 - Composite analysis of wet-dry seasons

Cyclone (shading) and cyclone-associated

- Role of intense cyclones for precipitation, snow cover and sea ice in the Nordic Seas:
 - ERA-Interim reanalysis OND 1979-2014
 - 6-hourly cyclone tracking and statistics (TRACK)
 - Cyclone-associated precipitation in 5° radius
 - Composite analysis of wet-dry seasons

Cyclone (shading) and cyclone-associated

Own work

Integrated water vapor (IWV)

- Role of intense cyclones for precipitation, snow cover and sea ice in the Nordic Seas:
 - ERA-Interim reanalysis OND 1979-2014
 - 6-hourly cyclone tracking and statistics (TRACK)
 - Cyclone-associated precipitation in 5° radius
 - Composite analysis of wet-dry seasons

Integrated water vapor (IWV)

- Role of polar lows and atmospheric rivers for water vapor variability in the Arctic:
 - AMSU-B satellite, ASR reanalysis and HIRHAM5 regional climate model
 - Case study from January 7, 2009

AVHRR satellite image

- Role of polar lows and atmospheric rivers for water vapor variability in the Arctic:
 - AMSU-B satellite, ASR reanalysis and HIRHAM5 regional climate model
 - Case study from January 7, 2009

Sea level pressure (shading; hPa) and 10-m horizontal wind (arrows)

- Role of polar lows and atmospheric rivers for water vapor variability in the Arctic:
 - AMSU-B satellite, ASR reanalysis and HIRHAM5 regional climate model
 - Case study from January 7, 2009
 - Association between polar lows and atmospheric rivers
 Precipitation

AVHRR satellite image

- Arctic sea ice persistence and teleconnections:
 - NSIDC satellite and ERA-Interim reanalysis 1979–2015
 - Lead/lag correlations and regressions
- Anomalous Arctic summer sea ice melt in ECHAM5:
 - Follow-up of Knudsen et al. (2015)
 - Anomalous atmospheric patterns in summers of high vs. low Arctic sea ice melt

Sea ice extent autocorrelation

Mean sea level pressure in high – low sea ice melt summers

Own work

- Role of polar lows and atmospheric rivers for water vapor variability in the Arctic
- Role of polar lows and atmospheric rivers for water vapor variability in the Arctic
- Arctic sea ice persistence and teleconnections
- Anomalous Arctic summer sea ice melt in ECHAM5

Own climate communication

Introductior

Own work

Summary

Summary

Introduction $(\mathcal{AC})^3$ Own work Summary

Summary

- 1. The Arctic i "hot", not c temperatur
- (AC)³ aims to improve understanding of reasons for and impacts of Arctic amplification
- Collaboration very welcome based on common interests

Arcti**C** Amplification: Climate Relevant Atmospheric and Surfa**C**e Processes and Feedback Mechanisms (AC)³

www.ac3-tr.de

akk for oppmerksomhete

ank you for your attentio