Assessment of integrated water vapor inferred by GPS, miscellaneous measurements and atmospheric models

Steinke¹, S., S. Crewell¹, S. Reitter¹, and G. Dick² ¹ Institute of Geophysics and Meteorology, University of Cologne, ² Geoforschungszentrum Potsdam

Multi-instrument Comparison

Settlement 50 - 100 m • COSMO-NRW A Measurem Mineral Extraction 100 - 200 m • COSMO-DE • City

Forest Grass

The GPS antenna of the Geoforschungszentrum Potsdam (GFZ), a microwave radiometer, and a sunphotometer provide continuous measurements of integrated water vapor (IWV). During HD(CP)² Observational Prototype Experiment (HOPE) in April/May 2013 a large number of radiosoundings is available. These measurements and the infrared and near infrared measurements of MODIS are compared to each other and the model output of ICON.

Model Evaluation

The high-resolution COSMO reanalysis (COSMO-REA; dx = 7 km) performed within the Hans Ertel Centre is assessed in terms of water vapor using GPS measurements provided by GFZ relative to ERA-Interim (dx = 50 km) and ERA-Interim downscaling (COSMO-DS).

Results

Comparison of the integrated water vapor (IWV) from measurements by ground stations of the GNSS (Global Navigation Satellite System) network (uncertainty: 1 kg/m²) with simulated IWV from COSMO-REA output every 15 min of the year 2011.

 \rightarrow In general, COSMO-REA is drier than the GNSS measurements.

- than GPS (0.7 mm) and
- Sunphotometer and MODIS-NIR show low
- MODIS IR largest bias & RMSE in comparison to
- Too few data sample for **RS – MODIS IR & NIR**

Fig. 2: Scatter, bias, RMSE, correlation coefficient, slope, and intercept parameter for all instruments at JOYCE during HOPE in kg/m² Lower-left half: When the two compared instruments meaasure. **Upper-right half**: Only when ALL instruments measure simultaneously.

Mean daily cycle:

- Well-defined daily cycle in both MWR and GPS
- Offset at beginning/end of day due to varying daily mean
- Larger offset in GPS due to processing

Fig. 5: Median, 25% to 75% percentile (Box) and minimum/maximum of bias (left) and RMSE (right) of IWV averaged over all GNSS stations for 2011.

 \rightarrow While the bias of each reanalysis is very similar, the RMSE of COSMO-REA is significantly smaller especially than COSMO-DS

temporal variability High \rightarrow IWV wel İS represented with COMO-REA

Fig. 3: Mean daily IWV cycle from GPS and MWR at JOYCE for April – May 2013.

Fig. 4 : Variation of mean standard deviation with length of time period for April – May 2013. Noise level of MWR given as black dot on y-axis.

Resolved variability:

- Noise level of MWR matches MDS
- Variability in ICON-DE smaller than in COSMO-DE and measurements (due to forcing)
- Variability in COSMO larger than in measurements
- Why mean STD MWR 15 min eventually larger than MWR 5 s?

Bollmeyer, C. et al.: "Towards a high resolution regional reanalysis for the CORDEX Europe domain", Q. J. R. Meteorol. Soc., submitted

Steinke, S. et al.: "Multi-Instrument Comparison of Integrated Water Vapour on High Spatio-Temporal Resolution During HOPE", in preparation

COST,, München, Germany, 26 – 28 February 2014