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3. 1-D variational retrieval algorithm 

6. Conclusion and future work 

•  A 1-D variational algorithm for temperature profile retrieval in clear-sky 
has been developed for the HAMP radiometer. 

•  A-priori knowledge from climatology or from the ECMWF forecast 
system can be used. 

•  Small amount of information can be extracted from the measurements 
when ECMWF pure background errors are used. 

•  Best results (mean RMS < 1K) with ECMWF profiles as a-priori and 
blended Sa. 

o  Extend the retrieval to all HAMP channels, including water vapour. 

o  Extend the analysis to the whole campaign. 

1. Introduction 
 
 
 
 
 
 
 
 
 
 
 
 

4. Case study 

 

 

 

 

 

 

 

2. The HAMP radiometer 

Fig. 1: The HALO aircraft during the NARVAL-South campaign (left). NARVAL-South flight patterns for 
the 9 flights (right). 
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Profiles of temperature and humidity are fundamental for weather 
forecasting, climate monitoring as well as the interpretation of  remote 
sensing instrument measurements. The HALO (High Altitude LOng range 
aircraft) remote sensing payload includes a 26 channel microwave 
radiometer, a 36 GHz Doppler cloud radar and a water vapor lidar. 
During the recent field campaign NARVAL-South (December 2013), 
HALO was flown over Tropical Atlantic with the aim of measuring 
tropical warm boundary layer clouds.  
In this work we present an 1-D variational algorithm to retrieve profiles 
of temperature and humidity for the HAMP (HALO microwave package) 
radiometer. 

Fig. 3: HAMP radiometer clear-sky weighting functions at Nadir-viewing geometry 
at a ceiling height of 13 km. Mech et al. (2014) 

The HAMP instrument: 
•  26 channel microwave radiometer 
•  Temperature and liquid: 60 and 118 

GHz O2 absorption lines 
•  Humidity, liquid and snow: 22 and 

183 GHz H2O lines 
•  Footprint at 13 km: from 1.2 km (K-

band) to 0.6 km (183 GHz) 

Fig. 2:. Installation of the remote sensing suite on 
HALO. From left to right: radiometer boxes, lidar 
window and radar antenna. 

•  Optimal estimation equation: 

Se: measurement error covariance. 
Diagonal,1K error for all channels 
K: Linearized radiative transfer model 
Xa, Sa: a-priori profile and error 
covariance 
Y: measurement vector 

•  A-priori profiles, errors and covariances: 
Dropsonde climatology 
75 dropsondes, launched during NARVAL-South, 
have been used to derive Xa and Sa. 
ECMWF 
Delayed cut-off forecast (T639) at 3 to 12-hour is 
used as Xa. 1-D background error covariances Sa 
are extracted (E. Holm, 2012) from 3-D ones used 
for data assimilation in the ECMWF forecast 
system. 

Fig. 6: Difference between ECMWF 
temperature profiles and 8 dropsondes. 

5. Sensitivity to a-priori covariance matrix 

 

 

 

 

 

 

 

Fig. 8: Fraction of a-priori RMS (mean: blue, each dropsonde: black) 
and degrees of freedom for signal (red) as a function of the Sa matrix. 

Mean RMS over the retrieved profile and degrees of freedom for signal 
(DFS) have been calculated and averaged for the 8 dropsondes. Figure 
8 shows the DFS and RMS sensitivity to the a-priori covariance matrix 
Sa. On the left hand side of the plot Sa estimated using the dropsonde 
database has been used, on the right the background error covariance 
matrix from ECMWF has been used. 

Sa = SaECMWF*weight + (1-weight) * Sadrop 
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sondes are launched 4 times daily at 0000, 0600, 1200,
and 1800 UTC. Additionally, at the Falkenberg site,
DWD maintains a 99-m mast with continuous measure-
ments of temperature and humidity taken at six levels
(10, 20, 40, 60, 80, and 98 m) with an integration time of
10 min.

3. Retrieval method

The true atmospheric state vector x, to be retrieved
in this study, consists of vertical profiles of atmospheric
T, !v, and LWC, such that we can notate x ! [T, !v,
log10(LWC)]. From here on vectors will be noted in
bold (here, i.e., profile vectors). We retrieve
log10(LWC) instead of directly LWC, because the dis-
tribution of log10(LWC) more closely resembles a
Gaussian shape than LWC, and additionally, we do not
have to worry about negative LWC values within the
retrieval procedure. Multiple liquid water cloud layers
can also be retrieved and state no limitation to the
method. The vertical grid of T and !" is set to 50 m in
the lowest 200 m and then increases gradually to 150 m
at 1000 m, 250 m at 3000 m, and 500 m at 10 km above
the surface, corresponding approximately to typical
height grids in state-of-the-art NWP. LWC, however, is
retrieved on the vertical grid of the target classification.

a. Measurement inversion

The goal of the IPT is to retrieve x by optimally
exploiting the information from a given measurement
vector y (Rodgers 2000). Depending on the situation, y
will consist of a specified vector of brightness tempera-
tures (TBs) and, in the cloudy cases, additionally of a
vector of radar reflectivities (Z), that is, y # (TB, Z).
Principles of the method are described in detail by L07
and L04; here, we want to focus on the improvements
made in the last years and will thus only give a short
method overview.

Generally in remote sensing applications, determin-
ing x from y directly is an underdetermined and ill-
conditioned problem, meaning that no unique solution
exists and that very small errors in the measurement
may lead to huge deviations in the derived atmospheric
profile. A way to solve this problem is to add a priori
information, that is, information about the atmospheric
state that is given prior to the measurement (e.g., cli-
matological information or data from the closest radio-
sonde). Typically, the optimal estimation equations
(e.g., Rodgers 2000) are used for combining measure-
ment and a priori information. If the relationship be-
tween x and y is slightly to moderately nonlinear, an
optimal atmospheric state xop can be found by iterating
the following formulation:

xi$1 # xi $ %Ki
TSe

& 1Ki $ Sa
& 1'&1

( )Ki
TSe

& 1%y & yi' $ Sa
& 1%xa & xi'*, %1'

where i represents the iteration step, xa is the a priori
profile of T, !", and LWC, Sa is the a priori covariance
matrix, and Se is the combined measurement and for-
ward model error covariance matrix. Here, Ki # +F(xi)/
+xi # +yi/+xi represents the so-called Jacobian, or the
sensitivity of the forward model to changes in x,
whereby Ki is recalculated for each iteration. The for-
ward model F transforms from the state space (x) to the
measurement space (y) in a straightforward way. For
example, given a space vector at a certain iteration xi, F
calculates TB by applying the radiative transfer opera-
tor (RTO) at the HATPRO frequencies and, in the
cloudy case only, Z by assuming a specified Z–LWC
power-law relationship of the form Z # a LWCb. Thus,
the forward model can be noted in the following way:

F%x' # !RTO%T, q, LWC'

a LWCb "# #TB

Z $ # y. %2'

Optimally, the formulation of Eq. (1) should guarantee
the minimization of a quadratic cost function between
xa and xi, respectively, y and yi, when the difference
between xi$1 and xi goes toward zero. The iteration
procedure is terminated after an optimal number of
iterations (i # op) when IPT has converged to a sen-
sible point. Here a quadratic cost function is applied to
determine whether the retrieved F(xop) is adequately
close to the F(xi&1) of the prior iteration (for more on
the convergence criterion see L04). It is important to
note that the solution xop must be interpreted as the
most probable solution of a Gaussian distributed prob-
ability density function, whose covariance can be writ-
ten as

Sop # %Ki
TSe

& 1Ki $ Sa
& 1'&1. %3'

The diagonal elements of this matrix give an estimate of
the mean quadratic error of xop, whereas the off-
diagonal elements yield information on the correlation
of retrieval errors between the different heights.

A further important measure for retrieval algorithm
evaluation is the averaging kernel matrix A, which
states the sensitivity of the retrieved to the true state
(# +xop/+x). In the case of Gaussian statistics, A can be
written as

A # Sop · %K i
TSe

& 1Ki'. %4'

The diagonal values of A are frequently used as a mea-
sure of vertical resolution (Rodgers 2000), whereas the
trace of A states the independent number of levels,
which can be retrieved from a given measurement.
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Fig. 5: Temperature profiles a-priori 
errors, from the ECMWF forecasting 
system (blue) and from dropsonde 
climatology (red). 

Fig. 4: Temperature profiles a-priori error covariance 
matrices, from the ECMWF forecasting system (left) 
and from dropsonde climatology (right). 

Figure 7 shows the difference between simulated 
and measured brightness temperature (Tb). The 
discrepancies can be due to:  
•  radiometer calibration 
•  uncertainty of oxygen absorption 
•  modelling of surface emissivity (wind, sea 

surface temperature) 
Mean bias was subtracted from simulated Tb. 

•  HALO crossed the Atlantic from Barbados to 
the coast of Portugal 

•  8 dropsondes were released and used to 
assess the quality of the retrieved profiles 

•  ECMWF profiles mean RMS is 1.2 K 

•  Use of HAMP measurements to reduce the 
error 

Fig. 7: Mean difference between measured and simulated Tb using ECMWF profiles (blue) and 
dropsondes (red). Vertical bars indicate max and min bias for the 8 dropsondes. 


