Calibrating Ground-Based Microwave Radiometers: Uncertainty and Drifts

N. Küchler¹, D.D. Turner², U. Löhnert¹, S. Crewell¹ (2016), *Radio Science*, doi: 10.1002/2015RS005826 ¹Institute for Geophysics und Meteorology, University of Cologne, Germany; ²NOAA National Severe Storms Laboratory, OK, USA

1. MiRaCalE

The Microwave Radiometer Calibration Experiment (MiRaCalE) took place in fall 2014. Ten "Liquid Nitrogen Calibrations" and 2841 "Tipping Curve Calibrations" were performed with a state-of-the-art microwave radiometer to assess

2. Calibration Techniques

Liquid Nitrogen Calibration (LN2cal)

Tipping Curve Calibration (TCC)

Zenith radiances (B^{zen}) as "cold" load:

1)Opacity-airmass pairs at several elevation angles

calibration uncertainties and instrument drifts.

Humidity And Temperature Profiler (HATPRO)

- •7 channels between 22 and 31 GHz (humidity + liquid water)
- •7 channels between 54 and
- Fig. 1: HATPRO at the NSSL,
- 58 GHz (temperature) 1 second temporal Oklahoma, USA. resolution
- "hot" load Fig. 2: Sketch of "cold' Fig. 3: Observing the load observation homogeneously Internal noise source (green) with reflection stratified atmosphere added to "cold" and "hot" of receiver's signal at several elevation (red).angles. signals

LN2-cooled blackbody at

blackbody at ≈ 300 K as

≈ 77 K as "cold" load

• Ambient temperature

- 2)Linear regression of pairs provides zenith opacity
- → B^{zen} from radiative transfer equation without scattering

The relation between the detected voltage U_{sc} and the scene radiance B_{sc} is determined by the instrument's gain g, the receiver's equivalent noise radiance B_R and the instrument's **non-linearity** *α* :

> $U_{sc} = g(B_{sc} + B_{R})^{\alpha}$ (1)

The three unknowns (α , g, B_R) are determined by observing two calibration references both with and without an additional, constant noise signal B_N leading to four unknowns and four calibration points.

3. Drifts

Frequent calibrations of the parameters in eq. (1) are necessary to ensure measurement accuracy:

Figure 4 shows how **drifts** of the calibration parameter B_{R} influence the retrieval of

4. Accuracy of the Cryogenic Load

Uncertainty sources:

- Resonant effects [Pospichal et al. 2012]
- Entrainment of oxygen [Paine et al. 2014]
- Uncertainty of the refractive index of LN2

cryogenic load radiances by solving eq. (1) for B_{sc} (shown in the temperature regime as T_{c}) using a reference voltage signal and TCCs that were performed at different times.

5. Spectral Consistency

 Calibration biases can differ between radiometer **channels** (Fig. 6), which influence multi-frequency retrievals: Integrated water vapor (IWV) retrieval $\rightarrow 1$ **K offset** between two channels → **Error of 0.73 mm** (corresponds to 70 % of the diurnal cycle of IWV; Fig. 7).

• Control measurements (Fig. 6) can identify biased calibrations by testing for "spectral consistency". 23.04 23.84 25.44 26 24 27.84 31.40

[Maschwitz et al. 2013].

We found a total **uncertainty of 0.5 K for the** LN2 cooled blackbody by using TCCs to retrieve the cold load's temperature (Fig. 5). Drifts of B_{R} were taken into account.

Fig. 5: Deviation of cryogenic load temperature $T_c(TCC)$ derived from TCCs from the truth T_c .

6. Summary

• Frequently updating calibration parameters ensures stable long-term-measurements. • The **spectral consistency** of control measurements is useful to estimate calibration accuracy.

• The brightness temperature of the LN2-cooled load is accurate within 0.5 K.

References

- Maschwitz, G., U. Löhnert, S. Crewell, T. Rose, and D.D. Turner (2013), Investigation of ground-based microwave radiometer calibration techniques at 530 hPa, Atm. Meas. Tech., 6, 2641--2658, doi:10.5194/amt-6-2641-2013.
- Paine, S., D.D. Turner, and N. Küchler (2014), Understanding Thermal Drift in Liquid Nitrogen Loads Used for Radiometric Calibration in the Field, J. Atmos. Ocean. *Tech., 31*, 647--655, doi:http://dx.doi.org/10.1175/JTECH-D-13-00171.1
- Pospichal, B., G. Maschwitz, N. Küchler, and T. Rose (2012), Standing wave patterns at liquid nitrogen calibration of microwave radiometers, in "Proceedings of the 9th International Symposium on Tropospheric Profiling", doi:10.12898/ISTP9prc
- Turner, D.D., S. Clough, J. Liljegren, E. Clothiaux, K. Cady-Pareira, and K. Gaustad (2007), Retrieving Liquid Water Path and Precipitable Water Vapor From the Atmospheric Radiation Measurement (ARM) Microwave Radiometers, IEEE T. Geosci. Remote Sens., 45(11), 3608--3609, doi:10.1109/TGRS.2007.903703.

Acknowledgements

This work was supported in part by grant DE-SC0008830 from the US Department of Energy as part of the Atmospheric System Research program and the Grant No. GSGS-2016A-T02 of the Graduate School of Geosciences of the University of Cologne.