Investigation of super-cooled liquid clouds at the Zugspitze mountain using long-term observations of high frequency passive microwave radiometers

Kneifel¹, S., S. Redl¹, U. Löhnert¹, S. Crewell¹ ¹ Institute of Geophysics and Meteorology, University of Cologne

Motivation

- Liquid water droplets in natural clouds can exist down to -38°C.
- This so called super-cooled liquid water (SLW) plays an essential role in cold cloud microphysics.

Validation approach using RT simulations and observations

Long-term observations of passive and active MW observations and additional instruments like a ceilometer (Löhnert et al., 2011) from the environmental research station Schneefernerhaus (UFS) at 2650m have been used to select ideal cases (thin single layer clouds) for model - observation comparison of the different SLW absorption models.

- Even small amounts of SLW (<30g/m²) in clouds dramatically change their radiative effect (radiative forcing).
- Passive microwave (MW) retrievals of SLW depend on accurate models of the SLW absorption coefficient.
- Current models are mainly extrapolations based on laboratory data with T_{water} > 0°C.

Liquid Water Path [g/m²] Sensitivity of the shortwave flux at the surface (SFC) and top of atmosphere (TOA) to cloud liquid water path (LWP)

(from Turner et al., 2007).

How large are the model discrepancies?

In this study we compared different SLW absorption models: Ellison (2006), Liebe et al. (1991/93), Ray (1972) and Stogryn et al. (1995):

RT model – observation residuals 31.4 vs. 90 GHz

Simulated brightness temperatures (TB) [K] for a ground-based sensor as function of frequency for a cloudy winter atmosphere and different liquid water absorption models (color). Same as left but only the TB differences [K] between the SLW absorption models are shown.

- While the sensitivity of the MW channel to SLW increases with frequency², also the uncertainty in the absorption models increases with frequency.
- Including high frequency channels (e.g. 90/150 GHz) in SLW retrievals for high sensitivity/accuracy means that also current absorption models must be improved.

LWP [g/m²]

LWP [g/m²]

Differences between the absorption models increase with frequency, LWP and lower temperatures.

References:

ICCP, Leipzig, 2012

Löhnert et al., 2011: A multi-sensor approach towards a better understanding of snowfall microphysics: The TOSCA project, Bull. Amer. Meteor. Soc., 92(5).

Turner et al., 2007: Thin liquid water clouds: Their importance and our challange, Bull. Amer. Meteor. Soc., 88(2).

Ellison, 2006: Dielectric properties of natural media, in Thermal Microwave Radiation: Application for remote sensing, Editor C. Mätzler, IET Publisher.

Liebe et al., 1991: A model for the complex permittivity of water at frequencies below 1 THz, Int. J. Infrared Millimeter Waves, 12(7).

Liebe et al., 1993: Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz. AGARD, Atmospheric propagation effects through natural and man-made obscurants for visible to mm-wave radiation.

Ray, 1972: Broadband complex refractive indices of ice and water, Appl. Opt., 11(8).

Stogryn et al., 1995: The microwave permittivity of sea and fresh water, GenCorp Aerojet, Azusa, CA, Aerojet Rep.

Cadeddu and Turner, 2011: Evaluation of water permittivity models from ground-based observations of cold clouds at frequencies between 23 and 170 GHz, IEEE Trans. Geosc. Rem. Sens., 49(8).

http://www.geomet.uni-koeln.de, http://gop.meteo.uni-koeln.de/tosca