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The absolute value of LDR is not well modeled by the scattering simulations.
The Ori et al. (2014) model matches well the LDR-DWR behavior (figure 9).

Conclusions
s 2750 | "': 2750
The scattering databases of melted snowflakes available so far are not able to fully reproduce the o = R ok y oA |
observed triple frequency characteristics in the melting layer. = B ‘;.'..‘15._,‘: s $ [
5 -2250 o :. : o o ° :0 : 12250
General features and relation among observables can be reproduced, but the absolute values are & LB B L e ’ ;‘“.
affected by substantial biases. « : 2000 £ c ot LT .,-:. 2000 £
- = B Y 1750
. . . . . e . . ‘ 1750 . 3 -s' . -
The biases can be partially explained by the highly simplified melting layer model adopted (constant 5 — oo e ST ~251 Ahae v "*
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More detailed melting models might help, but the scaling of the aggregate mass with size still plays a F,;'gure 9: Observed LDR as function of DWRs. Markers are color coded according to height above
major role in defining the snow scattering properties. the site
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