A miniature microwave radiometer network for FESSTVaL

FESSTVaL MWR Team: Ulrich Löhnert, Christine Knist, Frank Beyrich, Volker Lehmann, Tanya Nomokonova, Bernhard Pospichal, Tobias Böck, Felix Ament, Marco Clemens,...

Motivation

- Best continuous (~min) estimate of cloudy vertical ABL thermodynamic structure during FESSTVaL → complement radiosondes
- Sub-meso-scale variability of vertical temperature and humidity structure
- Derivation & application of common **QC/QA** (EMF "TDYN-PRO")

Research questions

- Derive horizontal humidity (and temperature) gradients?
 - Cold-pool passage
 - Frontal passage
 - ABL build-up?
- Improve temperature & humidity profiling by means of **sensor synergy**?
- How to describe error covariances of MWRs for the assimilation into ICON?

Instrument setup

Measurement modes & products

Vertical stare: Time series of LWP/IWV + crude T&WV profile @Lindenberg & Birkholz

Elevation scanning: Temperature profile up to 5km @Falkenberg

Azimuth scanning

Horizontal humidity gradient

- Continuous azimuth scans could provide gradients every ~3 min
- Representative of ~10 km radius
- Need: path integrated WV and assumption on vertical humidity structure (Schween et al., 2011)
- More challenging: temperature gradients

@Lindenberg

Strength and gradient of horizontal humidity gradient

Back-up slides

EMF project: TDYN-PRO

Integration von bodengebundenen "Profilern" in das DWD-Vorhersagesystem Goal: direct assimilation of TBs with KENDA

Assessment of TB calibration drifts

EMF project: TDYN-PRO

Integration von bodengebundenen "Profilern" in das DWD-Vorhersagesystem Goal: direct assimilation of TBs with KENDA

Assessment of TB uncertainty

EMF project: TDYN-PRO

Integration von bodengebundenen "Profilern" in das DWD-Vorhersagesystem Goal: direct assimilation of TBs with KENDA

Procedures for QA: measurement setup

Measurement modes & products

Azimuth scans IWV@30° elevation: spatial WV inhomogeneity

IWV (az_vs_time)@30 deg, jue_tophat, 200806 24 21 18 15 Time of day [UTC] 12 9 6 3 0 Ν E S W Ν

Absolute value

Deviation from scan minimum

Temperature profiling accuracies (radiosonde reference)

MW-profiling: How does it work theoretically?

Ground-based microwave radiometers

Low resolution water vapor profile, but excellent pathintegrated values Continuous data in all-sky conditions: resolution of seconds to minutes

Measurement focus: ABL

Temperature profile of the ABL, low resolution profile above

Path-integrated cloud liquid water

(unique)

Evolving networks

European Research Infrastructure for the observation of Aerosol, Clouds, and Trace gases (on ESFRI roadmap)

Research

ACTRIS Cloud Remote Sensing Center

- Research data: clouds, thermodynamics, and wind profiling
- Access to methods & platforms

Operational

Observations Capability Area E-PROFILE Provide centrally data to the European Weather Services