Quality Assessment of HATPRO Microwave Radiometers Measurements and Calibrations

Tobias Böck¹, Bernhard Pospichal¹, and Ulrich Löhnert¹ ¹ Institute of Geophysics and Meteorology, University of Cologne

1. Motivation and Goals

- The atmospheric boundary layer (ABL) is the most important undersampled part of the atmosphere. Top-priority atmospheric variables for numerical weather prediction (NWP) applications like temperature (T) and humidity (H) profiles are currently not adequately measured.
- Ground-based microwave radiometers (MWRs) like HATPRO (Humidity And Temperature PROfiler) are particularly well suited to obtain such profiles.
- MWR data are not yet routinely assimilated into operational NWP: \rightarrow The German Weather Service (DWD) investigates the potential of MWR networks for improving short-term weather forecasts over Germany.
 - \rightarrow Uncertainty Assessment for MWRs is needed for data assimilation (DA) into NWP systems

GOALS:

- **Define & apply procedure for MWR measurement uncertainty** characterization
- Store all error types into level 1 (lv1) files for each channel after each calibration

2. HATPRO Microwave Radiometer

Humidity and Temperature PROfiler:

- Measures thermal emissions from the atmosphere in brightness temperatures (TBs) in 14 different channels/frequencies within the K- and V-band
- Allows investigation of: T- and rudimentary H-profiles, liquid water path (LWP) and integrated water vapour (IWV)

3. Calibration and Measurement Errors

The following errors were characterized through coordinated experiments at the JOYCE site in Jülich (TOPHAT) and during a calibration campaign at FESSTVaL 2021 with 4 HATPROs (FOGHAT, SUNHAT, DWDHAT and HAMHAT) on the roof of DWD in Lindenberg:

- systematic errors: absolute liquid nitrogen (LN2) calibration errors, biases/offsets **drifts** (instrument stability, TB leaps between calibrations)
- random errors: **radiometric noise** (via covariance matrices)
- repeatability of calibrations

GSGS conference 2022, Cologne, 18/02/2022

calibration events. The square root yields the standard deviation.

Calibration event #

https://doi.org/10.17226/12540 Radiometer Physics GmbH: Humidity And Temperature PROfilers: Documentation: Technical Instrument Manual, 2015. accessed on Sep. 18 2021:

2641-2658, https://doi.org/10.5194/amt-6-2641-2013.

https://www.radiometerphysics.de/downloadftp/pub/PDF/Radiometers/General_documents/Manuals/2015/RPG_MWR_STD_Technical_Manual_2015.pdf.

tobias.boeck@uni-koeln.de

isions		
al ues d	Typical Error Values V-band	Determined via
0.3 K I8 K)	usually ≤ 0.5 K (up to 1.15 K)	Zenith measurement differences between two MWRs
0.3 K 6 K)	usually ≤ 0.8 K (up to 1.3 K)	Leaps at coldload after calibration
K	≤ 0.16 K	Leaps to zenith reference measurements after two immediate calibrations
0.19 K	≤ 0.28 K – 0.42 K	Standard deviation

Noise and drifts cannot directly be influenced by the operator, these are instrument specific. However, these are the only two errors which can

Maschwitz et al. (2013): LN2 calibration blackbody uncertainty of ±0.3 to ±1.6 K (old target)

Küchler et al. (2016): LN2 calibration blackbody uncertainty of ±0.5 (newer target)

RPG manual for Gen5 HATPROs: absolute TB uncertainty 0.5 K, noise 0.10 to 0.15 K

• Define lv1 files with all uncertainties for each HATPRO after each

• Precise guidance for operators (e.g. DWD, ACTRIS, COST action PROBE) on how to operate and calibrate HATPROs and how to avoid

Location characterization (radio frequency interference and obstacles): Sensitivity experiments with a radiative transfer model to analyze

observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network, Atmos. Meas. Tech., 10, 3947-3961 Küchler, N., D.D. Turner, U. Löhnert and S. Crewell, 2016: Calibrating ground-based microwave radiometers: Uncertainty and drifts. Radio Sci., 51 (4), 311-327. doi:10.1002/2015RS005826 Maschwitz, G., Löhnert, U., Crewell, S., Rose, T., and Turner, D. D., 2013: Investigation of ground-based microwave radiometer calibration techniques at 530 hPa, Atmos. Meas. Tech., 6 National Research Council: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. Washington, DC: The National Academies Press. 2009