# A new criterion to improve operational drizzle detection with ground-based remote sensing

**Acquistapace C.**<sup>1</sup>, U. Löhnert<sup>1</sup>, M. Maahn<sup>2</sup>, and P. Kollias<sup>3</sup> <sup>1</sup> Institute of Geophysics and Meteorology, University of Cologne, <sup>2</sup> University of Colorado, USA and NOAA Earth System Research Laboratory, Boulder, Colorado, <sup>3</sup> Stony Brook University, New York, USA

#### 1. Introduction

- Liquid clouds have a strong impact on the Earth's energy balance and are thus important component of the climate system (Randall et al, 1984).
- Drizzle is a fundamental element in the cloud life cycle because it can modify microphysical and radiative properties. Typically, cloud drizzle is liquid overestimated by general circulation models due to variability the autoconversion parametrization (Sun et al. 2006).
- Detection of drizzle from ground-based, compared to platforms (satellite, in situ) is essential to other properly evaluate climate models.
- The skewness of the Doppler spectrum of cloud radars has potential for detecting drizzle and has not yet been used operationally for this purpose (Luke and <u>Kollias, 2013)</u>

### 2. Skewness potential for drizzle detection

Characterization of drizzle development using a dataset of 500h of continental liquid clouds collected at JOYCE-CF: a) Reflectivity mean values binned in terms of LWP and distance from cloud top. b) Same for skewness.



### 3. Goal of this work

- The goal of this work is to develop a new criterion for operational drizzle detection exploiting the skewness of the radar Doppler spectrum.
- The criterion is designed to be an extension of the Cloudnet target classification and it can be provided as an optional product of the Cloudnet package (Illingworth et al, 2007).
- The aim of the new criterion is to improve the Cloudnet target classification product and similar cloud phase retrievals (e.g. Shupe et al, 2004) in detecting early drizzle developments by means of the skewness.

15<sup>th</sup> Conference on clouds and radiation, 9-13 July 2018, Vancouver, BC, Canada



### 6. Results: statistics from JOYCE-CF

drizzle seeding

precipitation

drizzle growth drizzle mature

drizzle/rain and cloud drop drizzle/rain

- Statistics of the 378 h of dataset for the 1 to 1 matching of Cloudnet/CLADS datasets. The total number of pixels used is 13378154
- IWP percentiles for the dataset calculated from fixed percentages of non-drizzle, drizzle seeding, drizzle growth, drizzle mature and discarded pixels between cloud base and cloud top.
- Distributions of reflectivity (top), mean Doppler velocity (center), and Doppler spectrum width (bottom) obtained for the Cloudnet target classification (left) and CLADS (right).



### 7. Conclusions and future work

- CLADS is able to detect drizzle formation at an earlier stage compared to the common Cloudnet target classification as shown with multiple case studies as well as with a statistical ensemble of classified cloudy pixels.
- CLADS is able to provide a geospatial collocation in time/height of the different drizzle areas. Each stage of drizzle development can be characterized in terms of LWP and highlights distinct features in terms of reflectivity, mean Doppler velocity and Doppler spectrum width.
- Turbulence can dampen the skewness signal; this may result in an increased amount of *non-classified* bins. The high resolution of the radar observations is key to exploit the full potential of the skewness observations and minimize the impact of turbulence (Acquistapace et al, 2017)
- Future work may focus on developing new techniques to properly separate non-drizzle areas from drizzle-growth areas.
- CLADS is currently being implemented as an additional Cloudnet product.

#### References

Acquistapace, C., S. Kneifel 2017: Optimizing observations of drizzle onset with millimeter-wavelength radars. Atmospheric Measurement Techniques, 10 (5), 1783–1802, doi:10.5194/amt-10-1783-2017 Illingworth, A. J., and Coauthors, 2007: Cloudnet, Bulletin of the American Meteorological Society, 88 (6), 883–898, doi:10.1175/BAMS-88-6-883, URL https://doi.org/10.1175/BAMS-88-6-883 Separating cloud and drizzle radar moments during precipitation onset using Doppler spectra. Journal of Atmospheric and Oceanic Technology, 30 (8) 1656–652 1671 J. Coakley Jr, D. Lenschow, C. Fairall, and R. Kropfli, 1984: Outlook for research on subtropical marine stratification clouds, Bulletin of the American Meteorological Society, 65 (12), 1290–1301 Shupe, M. D., P. Kollias, S. Y. Matrosov, and T. L. Schneider, 2004: Deriving mixed-phase cloud properties from Doppler radar spectra. Journal of Atmospheric and Oceanic Technology, 21 (4),675 660–670 Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2006: How often does it rain? Journal of Climate, 19 (6), 916–934.



## contact: cacquist@meteo.uni-koeln.d