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ABSTRACT
A new method of generating two-dimensional and three-dimensional cloud fields is presented, which share several
important statistical properties with real measured cloud fields. Well-known algorithms such as the Fourier method and
the Bounded Cascade method generate fields with a specified Fourier spectrum. The new iterative method allows for
the specification of both the power spectrum and the amplitude distribution of the parameter of interest, e.g. the liquid
water content or liquid water path. As such, the method is well suited to generate cloud fields based on measured data,
and it is able to generate broken cloud fields. Important applications of such cloud fields are e.g. closure studies. The
algorithm can be supplied with additional spatial constraints which can reduce the number of measured cases needed for
such studies. In this study the suitability of the algorithm for radiative questions is evaluated by comparing the radiative
properties of cloud fields from cloud resolving models of cumulus and stratocumulus with their surrogate fields at
nadir, and for a solar zenith angle of 0◦ and 60◦. The cumulus surrogate clouds ended up to be identical to the large
eddy simulation (LES) clouds on which they are based, except for translations and reflections. The root mean square
differences of the stratocumulus transmittance and reflectance fields are less than 0.03% of the radiative budget. The
radiances and mean actinic fluxes fit better than 2%. These results demonstrate that these LES clouds are well described
from a radiative point of view, using only a power spectrum together with an amplitude distribution.

1. Introduction

In order to investigate radiative transfer (RT) in the cloudy at-
mosphere, not only a RT model is needed, but also realistic two-
dimensional (2-D) or three-dimensional (3-D) cloud fields. In
this paper, a new method is presented to generate cloud fields
– based on temporally and spatially restricted measurements –
which can be used as input for RT models.

No current measuring technique exists which can provide in-
stantaneous 3-D distributions of cloud properties such as the
liquid water content (LWC) and number concentration. The best
measurements currently available are 2-D, e.g. a horizontal field
of radiances, or a time–height cross-cut of LWC. Therefore, the
needed 3-D cloud fields are often simulated by cloud-resolving
models (e.g. Scheirer and Macke, 2001). However, it would be
dangerous to rely only on results based on model clouds alone;
cloud-resolving models have to parameterize the cloud physics
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and chemistry, have a limited resolution and are often forced
with very simple boundary conditions. Thus, a careful valida-
tion of the structure of model clouds is needed, and an indepen-
dent method to model cloud fields directly from measurements
is mandatory.

One such alternative are fractal cloud generators. The arguably
simplest example would be cloud fields constructed with the
Fourier method; these cloud have a power-law power spectrum
and random phases. Kew (2003) developed a Fourier-based algo-
rithm dedicated to ice clouds which includes fall streaks. Benassi
et al. (2004) designed the tdMAP method to make fractal cumu-
lus clouds. This method generates a tree, in which every height
level represents a certain scale; the tree is pruned to generate
cloud-free sections. Schertzer and Lovejoy developed methods
to make multifractal clouds. Multifractals allow for a more accu-
rate description of cloud structure than the monofractal Fourier
spectrum; see Schertzer et al. (2002) for a clear introduction.
A popular method is the Bounded Cascade algorithm that cre-
ates fractal cloud fields with a discontinuous structure (Cahalan,
1994). Di Giuseppe and Tompkins (2003) present an advanced
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algorithm using the Fourier transform, which has many features
of fractal cloud generators, even if the chosen power spectrum
is not a power law, but a gamma function.

The above fractal cloud generators (except for Di Giuseppe
and Tompkins) have a structure that follows a perfect power law.
Even though fractal mathematics describes several aspects of
the observed cloud structure well, cloud fields also have fea-
tures that are not fractal and are not scale-free. Common exam-
ples are gravity and lee waves in cloud fields, cloud streets and
sometimes very regular hexagonal Bénard-type convective cells.
Other, more rare examples are orographic clouds, contrails and
ship tracks. Even Von Kármán vortices have been observed in
cloud fields behind islands. Additionally, one can expect random
deviations from scaling at large scales, as the fractal structure is
a statistical property. At large scales, i.e. at scales close to the
length of the measurement, the estimate of, e.g., the mean vari-
ance is inaccurate. Thus, deviations from the power-law scaling
are to be expected. Most fractal cloud generators, however, do
not take this into account and generate cloud fields that scale
perfectly up to the largest scales.

Apart from fractal algorithms, many methods have been devel-
oped to generate cloud fields that are based directly on measure-
ments. Examples are Scheirer and Schmidt (2004) and Los and
Duynkerke (2000), who have generated stratocumulus clouds
based on in situ LWC measurements and Liou et al. (2002) who
have generated 3-D ice clouds based on ground-based lidar and
radar measurements and on satellite observations. The structure
of these cloud fields, which are based directly on measurements,
has clear nonrealistic features. The stratocumulus clouds of Los
and Duynkerke, for example, have a constant LWC perpendicu-
lar to the flight direction and the ice clouds of Liou et al. have a
fixed cloud top and base height perpendicular to the wind. How-
ever, the advantage of this group of methods is that their cloud
fields correspond closely to the measurements. This is important
in closure experiments, where the clouds macro-, microphysical
and optical properties are measured and modeled in an attempt
to see whether they fit together, or there is still some physics
missing. Moreover, such fields can be used to bridge the scale
gap between various types of measurements and between mea-
surements and models.

This paper introduces surrogate cloud fields by combining
ideas from fractal cloud fields with realistic structure and fields
based directly on measurements. The method was designed to
generate cloud fields for closure and comparison studies. Our
method can also be applied as a user-friendly algorithm to gen-
erate fractal fields, but the cloud fields do not have to be self-
similar. Thus, the method has the flexibility to generate cloud
fields with a measured power spectrum. Moreover, these surro-
gate cloud fields also have the measured cloud water (height)
distribution. A version of the algorithm interpolates scanning
liquid water path (LWP) measurements without smoothing
the field. In addition, a cloud mask can be included in the
algorithm.

Evans and Wiscombe (2004) developed an algorithm to make
surrogate cumulus field, with a similar concept in mind, i.e. they
also used measured power spectra and LWC height distributions.
However, they describe the structure in terms of the power spec-
trum of a binary cloud mask; thus, the LWC structure inside
the cloud is not taken into account. The Evans and Wiscombe
algorithm can be seen as the specialist for the creation of surro-
gate cumulus fields from profiling measurements. By contrast,
this paper will show that our iterative method is best used for
(broken) stratiform clouds and is able to include non-statistical
measurements, such as the measured values themselves (inter-
polating the rest of the field), and a cloud mask.

A more or less complete description of a cloud field requires
at least one- and two-point statistics. One-point statistics re-
late to the values themselves: mean, standard deviation, etc.; the
most complete description being the probability density function
(PDF) or its empirical counterpart, the amplitude distribution. In
this paper, the amplitudes denote either the LWC or the LWP
values. The importance of one-point statistics in RT is exem-
plified by the success of the Independent Pixel Approximation
(IPA; Cahalan, 1994). Thus, it is an important feature of our
cloud generator that it reproduces this important cloud water
distribution as precisely as possible.

Clouds made with the standard Fourier method, which uses
complex Fourier coefficients with random phases, have a PDF
that is on average close to Gaussian. Bounded Cascade clouds
have a lognormal-like PDF. Such methods are, consequently,
not able to replicate a measured distribution. Three-dimensional
cloud fields will generally have a distribution with a significant
number of zeros, as a result of the variability of the cloud bound-
aries, i.e. the distribution will neither be Gaussian nor lognormal
like. Cumulus fields will have distributions with a significant
number of zeros even in the 2-D case. Consequently, methods
with a smooth PDF will only be able to generate 2-D stratiform
cloud fields of LWP, or optical depth. As a workaround one can
set all LWP values below a certain threshold to zero, but this
will affect the power spectrum. Such a change does not neces-
sarily represent a problem in theoretical work (Di Giuseppe and
Tompkins, 2003), but is not desired in studies utilizing measured
or fractal power spectra. The tdMAP algorithm and the multi-
fractal generators are able to indirectly influence the PDF of their
output cloud fields.

Two-point statistics describe how two points of a time series
– or field – relate to each other, e.g. how strongly they are corre-
lated. The structure of a stationary linear time series, i.e. a time
series made by a linear dynamical process, is fully described by
its autocorrelation function, or equivalently by its power spec-
trum. Cloud dynamics are known to be nonstationary and non-
linear, so more elaborate statistics may be required. This paper
will show that the power spectrum and the amplitude distribu-
tion are not able to describe some nonlinear structures found in
cloud fields. However, from the viewpoint of the radiative cloud
properties, they provide a very accurate description of the cloud
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liquid water structure. The importance of combining one- and
two-point statistics is also stressed in the paper of Evans and
Wiscombe (2004).

The nonlinear dynamics community has developed methods
to generate time series that have both a predefined amplitude
distribution and a power spectrum. The most used recent method
is the iterative amplitude adapted Fourier transform (IAAFT)
algorithm by Schreiber and Schmitz (1996, 2000), which will
be adapted in this study. Section 2 explains this algorithm in
detail. The IAAFT method for time series will be generalized
to 2-D and 3-D cloud fields in Section 3. The main objective of
this paper in relation to the IAAFT method is to make 2-D LWP
fields from one-dimensional (1-D) LWP measurements and 3-D
LWC fields from 2-D LWC fields (i.e. LWC profiles as a function
of time). In Section 4, 3-D LWC surrogate fields are made from
3-D cumulus and stratocumulus LWC fields generated by a Large
Eddy Simulation (LES) model. Using RT calculations, we will
show that the surrogate fields and the originals have very similar
radiative properties.

2. The IAAFT algorithm

This section will describe the original IAAFT algorithm
(Schreiber and Schmitz, 1996, 2000) and a small alteration of
this algorithm to make it more accurate. In a first reading of this
paper, this section can be omitted. It is sufficient that the reader
knows that given a power spectrum and a distribution, the itera-
tive algorithm is able to generate a time series which has these
statistical properties. In Section 3, the algorithm will be extended
to multidimensional power spectra and fields.

The IAAFT algorithm was developed for nonlinearity test-
ing (Theiler and Prichard, 1996; Schreiber and Schmitz, 2000).
This is a test which is used in the nonlinear sciences to distin-
guish between time series originating from linear and nonlinear
dynamical systems. As one is only interested in dynamical non-
linearities and not in static nonlinearities, the null-hypothesis of
this statistical test is that the time series originates from a linear
dynamical process which is modified by a nonlinear static filter.

The IAAFT algorithm is explained mathematically below and
illustrated with a LWP time series in Fig. 1. On our webpage (see
Section 6), the algorithm is clarified using pseudo Matlab code.

2.1. Spectral adaptation

The measured time series (Fig. 1, panel 1) is denoted by mn.
The algorithm starts with a random shuffle of the data points
(panel 2). In each iteration, i, the Fourier spectrum is adjusted
first (panel 3) and then the amplitudes (panel 4). Based on the
original time series the power spectrum is calculated as

M2
k =

∣∣∣∣∣
N−1∑
n=0

mnei2πkn/N

∣∣∣∣∣
2

. (1)

To produce a time series with the desired power spectrum {x1, i},
the Fourier transform of the initial or the iterated time series
{x2, i −1} is calculated (S′

k) and the magnitudes of its coefficients
are replaced by those of the original time series (M2

k). The phases,
ϕk = S′

k/|S′
k |, remain unaltered. Thus, the complex Fourier co-

efficients of {x1} are given by

Sk = Mkϕk . (2)

Consequently, the time series in panels 1 and 3 have the same
power spectrum; the difference between their structures is due
to differences in their distributions.

2.2. Amplitude adaptation

In the second step, the amplitudes are adjusted based on their
ranking. For example, the highest value of the iterate time series
is substituted by highest measured value. To do this for all values,
a sorted list is made of the values of the measured time series
{m ′

n} and the iterate time series {x ′
1}. Then a new time series is

created where the values of {mn} are put at the positions of the
{x1} values with the same ranking. Let the function rank() return
the ascending rank number, i.e. return 1 for the highest number,
2 for the second highest, etc., then the amplitude adapted time
series is given by

x2 = m ′
rank(x1). (3)

As this amplitude adaptation will alter the power spectrum, both
steps are repeated until a convergence threshold is reached and
the surrogate time series is returned (panel 5).

2.3. Convergence

As a measure of the accuracy (�) of the IAAFT algorithm, we
use the average of the changes that must be made to the iterated
time series at each step, relative to the total standard deviation
(σ ) of the time series:

� =
1
N

N∑
i

|x1,i − x2,i |
σ

. (4)

The final accuracy of the surrogates depends on the number of
values, i.e. for longer time series, a better fit can be achieved
(Schreiber and Schmitz, 1996). The algorithm typically con-
verges to a positive non-zero accuracy. Repeating the algorithm
with the same statistical parameters, it will converge to another
accuracy factor. This illustrates that the algorithm finds local
minima. Consequently, the accuracy can be improved by repeat-
ing the calculation and choosing the most accurate surrogate.
Typical calculation times on a normal PC for the IAAFT method
range from a few seconds for a time series of 4096 samples to
about an hour for large 3-D fields with 5 × 106 data points.
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Fig. 1. The IAAFT algorithm illustrated with a LWP measurement. The left column is the flow diagram, the middle column shows example LWP
time series and the right column are the histograms of the LWP time series. For explanation, see Section 2.

For the final surrogate, one can select the time series either
after the last Fourier adaptation (x1, with an identical power
spectrum), or after the last amplitude adaptation (x2, with the
same values as the original). We have selected the latter, in light
of the fact that small errors in the LWC values are probably more
important than small errors in its structure, especially for LWC
fields with values close to zero.

In the engineering community the IAAFT algorithm was re-
cently discovered independently and compared to their older
methods (Masters and Gurley, 2003). The IAAFT algorithm
was found to be most accurate for the cases studied. Lewis
and Austin (2002) used an algorithm similar to one of those
older algorithms to create fractal clouds with a lognormal
distribution.

2.4. Stochastic algorithm

Using the normal IAAFT algorithm the accuracy is not sufficient
for cumulus fields. This is apparent in cumulus fields as they are
very sensitive to small deviations; here one observes single pixel
clouds with low water content in the cloud-free portions, which
have a relatively strong impact on the radiative properties of the
cloud field.

We developed a new, more accurate IAAFT algorithm by
slightly altering the normal scheme, namely, by starting the al-
gorithm with a stochastic stage. In this first stage, only one-fifth
of the values in the amplitude adaptation were substituted; a sen-

sitivity study showed that any value between a few percent and
40% performs well. As this is done in every iteration, in the end,
the amplitude distribution of the surrogate is still very close to
the measured time series. However, the surrogate does not have
exactly the same amplitude distribution. Consequently, a sec-
ond stage is applied using the standard IAAFT algorithm. This
second stage starts with the surrogate from the first stage as first
guess instead of white noise. We call this algorithm the stochastic
iterative amplitude adapted Fourier transform (SIAAFT) algo-
rithm and it is used in Section 4.2 to generate cumulus surrogates
from LES cumulus fields.

3. Surrogate cloud fields of measurements

In this section, we will use the IAAFT method to make cloud
fields with power spectra and amplitude distributions from mea-
sured clouds. First, we will make surrogates of the same dimen-
sion as their original measurements in Sections 3.1 and 3.2, to
illustrate the strength and the limitations of the approach. Then,
in Sections 3.3 and 3.4 we will demonstrate how to generate a 2-D
surrogate field from a 1-D measurement, or a 3-D field from a 2-D
measurement. In this case, the higher dimensional power spec-
trum is calculated from its measured lower-dimensional power
spectrum by assuming that the field is horizontally isotropic.
Section 3.5 shows that for scanning measurements one can esti-
mate the anisotropic power spectrum and that the algorithm can
also be used for interpolation.
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Fig. 2. (a) Microwave radiometer LWP measurements obtained on September 5, 2001 during the BBC campaign. (b) IAAFT surrogate based on the
measurement. (c) The LWP distributions of the measurement and the surrogate. (d) Power spectra of the 1-D measurement (black), the 1-D surrogate
(offset 30 dB, upwards, grey) and the power spectrum of a version of the 1-D measurement with 2-s integration time (offset –30 dB, downwards,
grey). The scaled average 1-D power spectrum calculated from the 2-D surrogate (shown in Fig. 3) is plotted in black, on top of the power spectrum
from the 2-s time series.

The typical problems of spectral analysis also apply to the
IAAFT method. Hence, use of a sufficient number of data points
and appropriate windows before application of the Fourier trans-
forms is important. Windows are needed in Fourier analysis as
the time series are assumed to be periodic, i.e. it is assumed that
after the last value of the measured time series, the time series
resumes with the first measured value. Consequently, if the first
and the last value of a measured time series are very different,
spurious high frequencies are introduced that correspond to this
discontinuity. However, since windows also have their disadvan-
tages, we have opted not to use windows, but to carefully select
our time series and fields to have similar values at the beginning
and end.

3.1. 1-D LWP surrogate

As a first example, we utilized a 1-Hz LWP time series measured
with the MICCY 22-channel microwave radiometer (Crewell
et al., 2001) on September 5, 2001 at Cabauw, The Netherlands,
during the BALTEX Bridge Campaign (BBC). The observed
stratocumulus cloud had a cloud base at 2 km, with some wisps
of cloud at 1 km, and the high LWP periods in the time series
are associated with virga from the cloud. The wind speed at
2 km at the beginning of the measured time series was 5.5 m s–1,
as estimated from radiosonde data. We used the wind speed to

convert the temporal scale to a spatial scale. There were some
gaps in the data due to automatic calibration of the microwave
radiometer; these were bridged by linear interpolation.

From this LWP time series (Fig. 2a) we created a 1-D sur-
rogate (Fig. 2b) that exhibits a similar structure. In the LWP
measurement there are peaks, which are associated with the fall
streaks, in the high LWP part of the time series, but the low
LWC section has much less variability. The surrogate has much
variability in the low LWC section of the time series. Visually
comparing the surrogate with the measured time series is im-
portant, as the human eye is good at recognizing patterns and
spotting differences.

Figure 2c and 2d show that the amplitude distributions and
power spectra of the measurement and the surrogate are (almost)
identical. In this case, we achieved an accuracy of 0.3% with
4096 data points after 3 s of calculation on a desktop Pentium
IV PC.

3.2. 2-D LWC profiles

In this section, we create 2-D vertical LWC surrogates from 2-D
LWC profile retrievals. This illustrates the quality of the surro-
gates and is a first step towards making 3-D LWC fields from such
2-D LWC profiles, which is discussed in Section 3.4. To generate
these surrogates, we used a LWC profile time series, i.e. a 2-D

Tellus 58A (2006), 1



SURROGATE CLOUD FIELDS GENERATED WITH THE IAAFT ALGORITHM 109

Fig. 3. (a) Retrieved LWC profiles for a cloud field on September 23,
2001 during the BBC campaign. (b) Surrogate generated from the
LWC retrieval shown in (a); accuracy of the surrogate was at 0.4%. (c)
A cross-section through the 3-D LWC field shown in Fig. 5 at the
position of the dotted line (see Section 3.4).

time–height field (Fig. 3a). These LWC profiles were derived
using an optimal estimation technique (Löhnert et al., 2004) that
combines microwave radiometer brightness temperatures, radar
data, radiosonde profiles, lidar ceilometer cloud-base heights,

and 2 m temperature and humidity measurements, with a priori
information from a microphysical cloud model. Because of gaps
in the data, we had to linearly interpolate the field to a regular
grid, resulting in some loss of variance. The winds were strong
with speeds reaching 9.7 m s–1 at cloud height as measured by
the wind profiler at 8.5 h UTC. In this paper, all references to
times are expressed in decimal hours. Since the temporal resolu-
tion of this retrieval was 10 s, the horizontal spatial resolution of
the LWC profiles is 97 m. Apparently this poor spatial resolution
makes the cloud LWC field appear somewhat noisy. However,
its power spectrum shows good scaling behavior at all scales,
indicating that measurement and algorithmic noise, which tend
to be white, are not observed.

The LWC field is clearly anisotropic and we would like the
surrogate to have the same height-dependent LWC amplitude
distribution. In this case, we did not use one sorted vector with
all of the LWC values, as with the basic algorithm, but rather, we
performed this operation separately for every height level; that is,
we utilize a 2-D sorted LWC field. With this approach, the cloud
top and base height distributions are automatically preserved.

For the LWC profiles, one typically observes trends, e.g. an
adiabatically increasing LWC, that lead to spurious high frequen-
cies in the power spectra. To prevent this problem, we subtract
the mean LWC profile from the 2-D field itself before any calcu-
lations are made and then add this mean profile to the surrogate at
the end. The resulting structure is thus defined globally, whereas
the amplitudes are defined per height level.

The structure of the 2-D surrogate (Fig. 3b) looks similar to the
original LWC profiles (Fig. 3a), but there are some differences.
Especially strong vertical structures, like the fall streaks in and
below the cloud, are not as striking in the surrogate as they are
in the measurement.

3.3. 2-D LWP surrogate fields

In the next two sections, we will illustrate an important appli-
cation of the algorithm, the ability to create cloud fields that
have one dimension more than the measurement. For isotropic
fields the power spectrum can be converted from any dimension
to another, see e.g. Christakos (1992, chap. 6). For fractal spec-
tra Austin et al. (1994) gives this relation for 1-D to 2-D and
Kew (2003) for 1-D to 3-D. Evans and Wiscombe (2004) use an
optimization method to find a 3-D horizontally isotropic power
spectrum that has the same 2-D power spectrum as the original.

For our purposes we will restrict the discussion to the easy
case that the field is isotropic and the distance equal in both
directions. Then we can create a 2-D power spectrum from a 1-D
one by rotating, as well as rescaling the 1-D Fourier coefficients
around the origin in 2-D k-space (Fig. 4a). The rotation makes the
coefficients independent of direction. The rescaling is necessary
so that the power integrated over a circle for a certain frequency
is equal to the 1-D power at that frequency. For a n-dimensional
hyperphere the equation reads (Christakos, 1992)
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Fig. 4. (a) The 1-D power spectrum from Fig. 2d is rotated and scaled
to create a 2-D isotropic power spectrum. The upper right corner is
filled with the power at the highest 1-D frequency (the Nyquist
frequency). Note that the frequency scale in this plot is linear, while in
Fig. 2d it is logarithmic. (b) Two-dimensional surrogate field calculated
using the 1-D LWP time series of Fig. 2 for the underlying statistics.
The temporal scale of the time series was converted into this spatial
scale using a wind speed of 5.5 m s–1, taken from a nearby radiosonde.
The high peaks in the LWP values are due to the fall streaks in the virga
or very light rain; thus, they would hardly be visible in a photo or
satellite measurement of this cloud field. The accuracy was at 5‰. The
computation required about 1.5 h of CPU time for this 2-D field with
about 2 × 107 data points.

S2
n (k) = 1

An

∫
An

S2
1 (k · θ )dθ (5)

with An being the integration area, θ a unit vector, and the inner
product k·θ the distance from the origin. The subscript n denotes
the n-dimensional power spectrum that is calculated from the
1-D power spectrum S2

1.
As the size of a circle is proportional to the frequency, this

means one has to divide all coefficients by their wave number.
As a result, the squared Fourier coefficients of the isotropic 2-D

LWP field are given by S2(kx , ky) ∝ S2(k)/k with k =
√

k2
x + k2

y

being the magnitude of the 2-D wavenumber. In the algorithm, k

is rounded to the nearest wavenumber of the 1-D measurement.
After this step the total variance of the power spectrum is scaled
to the total variance of the amplitude distribution.

If kx and ky both have the value of the maximum wavenumber
of the original time series, the maximum isotropic wavenumber
is

√
2 times the maximum 1-D wavenumber. This means the

rotation will not produce spectral values to high kx and ky, i.e.
the grey upper right area in Fig. 4a. We chose to fill this area
with the power at the Nyquist frequency, i.e. we assumed a flat
spectrum at these frequencies. A more elegant method would be
to extrapolate the power spectrum to higher frequencies using its
self-similarity. However, we expect the results of either approach
to be similar.

In Fig. 2d, one can see that the average 1-D power spectrum
calculated from the rows and columns of the 2-D surrogate field is
almost the same as the power spectrum of the 1-D measurement,
only the typical Fourier noise is missing.

If the measured LWP vector has N values, the 2-D LWP field
will have N × N values. Hence, the vector with the sorted LWP
values, used in the amplitude adaptation, needs N × N entries;
every measured value has N copies in this vector. After these ex-
tra preparations, the basic algorithm from Section 2 was followed
again.

One of the resulting surrogates of this calculation is shown in
Fig. 4b. This 2-D surrogate was calculated using the 1-D time
series presented in Section 3.1. To make the calculation, we had
to average the data to 2-s resolution, due to memory limitations.
The LWP field in Fig. 4b may look noisier than the clouds we
see in everyday experience. However, the eye does not perceive
a LWP field, but rather, a radiance field. This radiance field is
smoother than the LWP field at small scales. Because of light
scattering, the radiance is representative for a region, not just
a point. This is called radiative smoothing and reduces much
of the variability in the radiance field at scales smaller than the
cloud depth. Furthermore, fall streaks contribute significantly to
the variance of the LWP field, but are not important for visible
radiation.

We constructed the 2-D surrogate cloud field using a 1-D time
series, which had a much smaller number of data points. From
standard stationary statistics, we have learned that this is ac-
ceptable. The 1-D time series represents a noisy estimator of
the larger 2-D field. However, cloud time series are not station-
ary (Davis et al., 1996, 1999). The mean, width and all other
moments and statistical properties of a time series may not be
defined for a nonstationary time series or inhomogeneous fields.
The fact that most power, i.e. variability in LWP is at the large
scales means that the amplitude distribution will never converge.
A larger sample from this cloud field would most likely have
larger LWP variance and a broader LWP distribution, while a
small sample from a non-stationary data set will generally have
a smaller width of the amplitude distribution.

As an illustration, consider the standard deviation of the sur-
rogate LWP cloud field illustrated in Fig. 4b. The standard
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deviation of the entire 2-D LWP field is 109 g m−2, while the av-
erage standard deviation of 1-D line measurements of this field is
only 90 g m−2. Thus, if we had collected a zenith pointed mea-
surement from this spatially correlated cloud field, we would
have found a 17% smaller width of the LWP distribution. This
can be understood by imaging a 1-D measurement through the
maximum in the field. Due to the strong spatial correlations, the
other values will also be higher than average and the standard
deviation consequently smaller for such a 1-D measurement.

The broadening of the amplitude distribution to larger val-
ues of cloud liquid water is not that important for RT as the
relations between the radiative fluxes and LWP levels satu-
rated at high LWP. Thus the radiance is insensitive to errors
in LWP in this region. However, the broadening of the ampli-
tude distribution to lower values has the potential to be important
and should be carefully studied to estimate the size of possible
biases.

3.4. 3-D LWC surrogate fields

To generate a 3-D surrogate field based on the 2-D LWC profiles,
we apply the methods developed in Sections 3.2 and 3.3. Again
we remove the mean LWC profile from the measurement and
use a 2-D height-dependent sorted LWC field in the amplitude
adaptation. The 2-D time–height-based Fourier coefficients are
subsequently cylindrically rotated around the vertical wavenum-
ber axis and scaled like in Section 3.2 to make a 3-D horizontally
isotropic power spectrum.

A 3-D surrogate field made from the 2-D LWC retrieval pre-
sented in Section 3.3 is illustrated in Fig. 5. The three 2-D fields
actually shown in Fig. 5 are the average values of the 3-D field in
one of the three spatial dimensions. Note that the horizontally in-
tegrated fields look much smoother than the measured 2-D LWC
field, as an average field should. The cross-sections do have a
structure similar to the measurement (Fig. 3c).

Fig. 5. Three-dimensional surrogate LWC
cloud field made from the 2-D LWC field
shown in Fig. 3a. The 2-D fields illustrated
here should be interpreted as the integrated
values of the 3-D field as seen from the top
(large panel), the side (right panel) or the
front (bottom panel). The dashed line
indicates the position of the vertical
cross-cut shown in Fig. 3c. The calculation
of this 3-D surrogate with 5 × 106 data
points took about an hour on a desktop PC
and its accuracy was 5 × 10−4.

3.5. 2-D LWC field with local forcing

In the future, we would like to apply the IAAFT method to
create surrogate cloud fields based on ground-based scanning
microwave radiometer measurements. A typical scanning mea-
surement would be to rotate the instrument on its azimuth-axis,
at a fixed elevation angle, while the clouds drift by on the wind.
In this way one would measure LWP values in a spiral pattern at
cloud height, assuming that the cloud thickness is less than the
cloud height.

For the example in this subsection, we used an enhanced ver-
sion of the algorithm that also takes the LWP values measured on
the spirals as its third input. In an extra iterative step, between the
spectral adaptation and the amplitude adaptation, the algorithm
forces the LWP values at the measured locations, to correspond
with the measurement.

One advantage of a scanning measurement is that the 2-D LWP
power spectrum can be estimated without assuming isotropy.
From the LWP values on the spiral, the 2-D periodic autocor-
relation function is estimated. With the Fourier transform the
autocorrelation function is converted into the 2-D anisotropic
power spectrum. The LWP distribution is estimated based on
the LWP values on the spirals, i.e. if the full field has x times
more values, the LWP distribution contains every measured LWP
value x times.

In this subsection, we will simulate an idealized scanning
measurement on a LES maritime stratocumulus field, which was
simulated by Duynkerke et al. (2004). These LES clouds were
modeled for the conditions during the FIRE I campaign with a
resolution of 50 m in the horizontal (52 grid boxes) and 10 m
in the vertical (112 grid boxes). Based on this LWC field, the
LWP field was calculated. The scanning pattern is plotted on
top of the LWP field (see Fig. 6a). The measured values, which
correspond to 16.5% of all values, were used to calculate the
surrogate shown in Fig. 6b.
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Fig. 6. A simulation of a LWP measurement on a LES stratocumulus
field. The statistics and the local LWP values of the LES LWP field
(Fig. 6a) are used to make the surrogate LWP field (Fig. 6b).

This version of the algorithm can be seen as an interpolation
algorithm that does not smooth the field, but maintains the struc-
ture of the measurement. In future work, we intend to investigate
the influence of the fraction of points and the scanning pattern on
the accuracy of the cloud field. It might be possible to find a more
optimal method to estimate the PDF where the local density of
the number of data points is taken into account. Furthermore, we
would like to apply it to measured data (LWP and LWC profiles)
and compare the results to measured radiative fluxes.

4. Evaluation

In this section, we assessed the appropriateness of using power
spectra (linear spatial correlations) and LWC height distributions
to create surrogate cloud fields for closure or comparison studies.
Some examples in Section 3 illustrated that these statistics do not
capture all aspects of the structure of clouds. We do not know
a priori whether the missing nonlinear structures are importnt

for RT or not. This question can only be answered for a specific
application. In this paper, we aim to study it for the distribution
of the radiances, irradiances and actinic fluxes. The irradiances
are important for the radiative budget (i.e. climate and weather
models), while the radiances are important for remote sensing
purposes. Actinic fluxes, the radiance falling on a point integrated
over all spatial angles, are important for photochemistry.

To assess the quality of the surrogate clouds, we utilized two
sets of LES clouds, comprised 31 stratocumulus LWC fields and
52 cumulus LWC fields and created surrogate clouds from each
LES cloud. The difference in the radiative properties between the
LES original and its surrogate is then used as a measure of the
quality of the surrogates. Next to the normal IAAFT surrogates,
we made Fourier surrogates and PDF surrogates. The Fourier
surrogates are calculated by using the power spectrum of the
original together with random Fourier phases. As always the
mean height profile is added afterwards. These Fourier surrogates
have, on average, normally distributed LWC values. The PDF
surrogates are created by randomizing the LWC values at each
height level. These PDF surrogates will thus have exactly the
same LWC height distribution, but no spatial correlations.

One of the maritime stratocumulus clouds (Duynkerke et al.,
2004) used is shown in Figure 6. Drop sizes were calculated for
each cloud grid box by assuming a monodisperse distribution
(i.e. 1 drop size) with 300 drops per cm3. The average reflectance
is 0.66 and the average optical depth is 47. The clouds are without
gaps and their depth varies from 30 to 460 m and is on average
300 m. These LES clouds were modeled for the conditions during
the FIRE I campaign with a resolution of 50 m in the horizontal
(52 grid boxes) and 10 m in the vertical (112 grid boxes).

The cumulus cases were originally modeled for the ARM
program and represent the diurnal cycle of cumulus over land
(Brown et al., 2002). Until the middle of the morning there are no
clouds. The cloud cover grows to a 31% (16% cloud reflectance)
in the afternoon. After this the number and cloud cover decreases,
but the clouds become deeper (almost 5 km) in the middle of the
evening. The run stops at midnight. The clouds have a resolu-
tion of 100 m in the horizontal and 112 m in the vertical. The
number of grid boxes is 66 by 66 horizontally with 122 height
levels. The average reflectance is 8% (assuming 1000 drops
per cm3).

The radiation calculations for all sets of clouds have been made
assuming the wavelength of the incoming monochromatic solar
radiation to be 550 nm with a solar zenith angle (SZA) of 60◦.
Additionally the radiative properties of the IAAFT surrogates
where also tested for a SZA of 0◦. The surface albedo was set to
zero, periodic boundary conditions were applied and the number
of photons amounted to 107. The cloud field was assumed to be
in a vacuum.

The radiances were calculated with the Monte Carlo model
MC-UNIK (Macke et al., 1999), which is enhanced by the ‘lo-
cal estimate’ method. These radiances were calculated in four
azimuth directions (0◦, 90◦, 180◦ and 270◦ azimuth) and at four
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viewing zenith angles: 0◦, 30◦, 45◦ and 60◦. This results in a total
of 16 calculations for each cloud field. The solar intensity was
1 kW m−2.

The upward and downward irradiances were calculated using
the Leipzig Monte Carlo Model (LMCM; Garcı́a and Trautmann,
2003). The actinic fluxes were calculated with SHDOM (Evans,
1998) using Nµ = 16 and Nϕ = 32, a splitting accuracy of 0.03
and a solar flux of 1.83 W m−2 nm−1. For easier comparison with
the other 2-D fields, the 3-D actinic flux field has been vertically
integrated to a 2-D integrated actinic flux (IAF) field.

4.1. Stratocumulus

For each of the LES cloud fields, we created two surrogate fields.
An example is shown in Figs. 7a and 7b. The surrogate stratocu-
mulus fields showed poor convergence with an average accuracy
of 12%, with the worst value at 18% (see Section 2). Two surro-
gates from the same original can differ greatly in accuracy; the
algorithm finds a local minimum.

Stratocumulus and altocumulus often display beautiful cell
structures, similar to Bénard convection. The input LES clouds
show such features. Their 3-D IAAFT surrogates show these
much less. For example the LES cloud in Fig. 7a has clearer
line patterns than its IAAFT surrogate in Fig. 7b. The same phe-
nomenon can be seen in surrogates made from 2-D LWP fields
and 2-D radiance fields with Bénard cells. It was even clearer in

Fig. 7. LES stratocumulus (a) and cumulus (c) cloud field and theirs surrogates (b and d).

a calculation made with one high-resolution LES stratocumulus
which had about 2 × 107 data points (Schroeter and Raasch,
2002).

To validate the radiative properties of the surrogate clouds,
we compared the radiative fields of all pairs of LES clouds and
their corresponding surrogates; see Fig. 8 for one example of an
LES cloud and its three different surrogates. The main visible
difference between the Fourier and the IAAFT surrogate is that
the latter captures the extreme values better. The PDF surrogates
are very similar to homogeneous clouds and show little variance.

With an analysis of variance (ANOVA) we compared the dif-
ferences between two sets with RT results from the Monte Carlo
models at 60◦ SZA. The first set is the result for the LES cloud
and its surrogate, the second set of results is from same LES
cloud which is calculated twice. The deviations in the mean
optical properties of the IAAFT surrogates are not statistically
significant. The Fourier surrogates and the PDF surrogates did
show significant deviations in their mean optical fields. Thus, in
this case the remaining differences can be attributed to the dif-
fering structure of these surrogates. For the actinic fluxes, calcu-
lated with SHDOM, a root mean square (RMS) error cannot be
determined.

The main results of the comparison of the mean optical prop-
erties of all clouds can be found in Fig. 9 and in Table 1. The
table presents the bias, relative RMS difference and the constants
of a linear regression between them (y = ax+b). We found that
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Fig. 8. An example of the fields of four
radiative properties for one of the LES
stratocumulus field used in the evaluation.
The LES cloud is in top row, its IAAFT
surrogate in the second row, its Fourier
surrogate in the third row and its PDF
surrogate in the bottom row. The left column
shows the optical depth of this cloud, the
second row the transmittance, the third row
the vertically IAF and the right row the
radiance. These calculations were made at
60◦ SZA.

Fig. 9. The relative difference between the
optical depth (a), transmittance (b), radiance
(c) and IAF (d) of the LES originals and
their three different types of surrogates.
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Table 1. Comparison of the radiative properties of original LES stratocumulus clouds and their surrogates. The radiances were calculated for
satellites with a zenith angle of 0◦, 30◦, 45◦ and 60◦. A positive bias means that the surrogate has a higher value

Variable or surrogate Mean templatea Mean surrogatea Rel. biasb Rel. RMSE a b

Average, optical depth
IAAFT 4.7 1001 4.7 1001 1.5 10−16 2.1 10−15 1.0 1000 −5.0 10−15

Fourier 4.7 1001 4.8 1001 1.5 10−02 2.4 10−02 1.0 1000 4.6 10−01

PDF 4.8 1001 4.8 1001 7.5 10−16 1.9 10−15 1.0 1000 1.8 10−14

Average, transmittance
IAAFT(0) 4.8 10−01 4.8 10−01 −2.9 10−05 4.9 10−04 1.0 1000 −1.8 10−04

IAAFT(60) 3.3 10−01 3.3 10−01 −3.8 10−04# 7.5 10−04 1.0 1000 −1.3 10−04

Fourier 3.3 10−01 3.3 10−01 −8.4 10−03∗∗∗
1.6 10−02 1.0 1000 −3.8 10−03

PDF 3.3 10−01 3.3 10−01 −3.4 10−03∗∗∗
4.8 10−03 1.0 1000 −8.8 10−04

Average, reflectance
IAAFT(0) 5.2 10−01 5.2 10−01 2.7 10−05 4.5 10−04 1.0 1000 −1.7 10−04

IAAFT(60) 6.7 10−01 6.7 10−01 1.9 10−04# 3.8 10−04 1.0 1000 1.2 10−04

Fourier 6.7 10−01 6.7 10−01 4.2 10−03∗∗∗
7.8 10−03 1.0 1000 7.4 10−04

PDF 6.7 10−01 6.7 10−01 1.7 10−03∗∗∗
2.4 10−03 1.0 1000 1.6 10−03

Average, radiance
IAAFT(0) 4.4 10−02 4.4 10−02 −2.2 10−05 2.9 10−03 1.0 1000 −1.0 10−06

IAAFT(60) 5.2 10−02 5.2 10−02 1.9 10−04# 2.6 10−03 1.0 1000 −4.3 10−05

Fourier 5.2 10−02 5.3 10−02 6.0 10−03∗∗∗
1.1 10−02 1.0 1000 9.8 10−05

PDF 5.9 10−02 5.9 10−02 1.4 10−03∗∗∗
4.2 10−03 9.9 10−01 4.6 10−04

Average, integrated actinic flux
IAAFT(0) 1.7 1000 1.7 1000 −4.2 10−03 1.4 10−02 9.9 10−01 9.5 10−03

IAAFT(60) 4.1 1001 4.1 1001 1.0 10−03 7.4 10−03 1.0 1000 −2.7 10−02

Fourier 4.1 1001 4.1 1001 6.0 10−03 1.5 10−02 1.0 1000 −4.5 10−01

PDF 4.2 1001 4.1 1001 −4.6 10−03 8.1 10−03 1.0 1000 −2.2 10−01

Standard deviation, optical depth
IAAFT 4.3 1000 4.3 1000 −1.2 10−02 2.3 10−02 9.9 10−01 −2.0 10−02

Fourier 4.3 1000 4.3 1000 −1.7 10−02 3.6 10−02 9.8 10−01 1.9 10−02

PDF 4.4 1000 1.3 1000 −7.1 10−01 8.2 10−01 1.7 10−01 5.4 10−01

Standard deviation, transmittance
IAAFT(0) 2.9 10−02 2.8 10−02 −2.1 10−02 3.7 10−02 9.7 10−01 2.1 10−04

IAAFT(60) 2.2 10−02 2.1 10−02 −2.8 10−02∗∗∗
4.2 10−02 9.7 10−01 1.0 10−04

Fourier 2.2 10−02 2.2 10−02 1.1 10−02# 1.1 10−01 1.1 1000 −1.1 10−03

PDF 2.2 10−02 1.0 10−02 −5.2 10−01∗∗∗
6.1 10−01 2.6 10−01 4.9 10−03

Standard deviation, reflectance
IAAFT(0) 2.3 10−02 2.3 10−02 −1.5 10−02 3.0 10−02 9.8 10−01 2.9 10−05

IAAFT(60) 3.2 10−02 3.2 10−02 −6.5 10−03# 2.3 10−02 9.7 10−01 6.4 10−04

Fourier 3.2 10−02 2.7 10−02 −1.4 10−01∗∗∗
1.7 10−01 9.3 10−01 −2.2 10−03

PDF 3.2 10−02 2.0 10−02 −3.7 10−01∗∗∗
4.0 10−01 2.7 10−01 1.1 10−02

Standard deviation, radiance
IAAFT(0) 4.8 10−03 4.7 10−03 −3.2 10−03 2.0 10−02 1.0 1000 3.1 10−07

IAAFT(60) 5.5 10−03 5.4 10−03 −4.1 10−03∗∗
2.1 10−02 9.9 10−01 1.8 10−05

Fourier 5.5 10−03 5.2 10−03 −4.4 10−02∗∗∗
6.1 10−02 9.0 10−01 3.0 10−04

PDF 5.8 10−03 5.5 10−03 −4.6 10−02∗∗∗
7.2 10−02 1.1 1000 −7.5 10−04

Standard deviation, integrated actinic flux
IAAFT(0) 7.9 10−02 7.8 10−02 −1.2 10−02 6.3 10−02 9.9 10−01 −3.7 10−04

IAAFT(60) 1.4 1000 1.4 1000 −8.7 10−03 5.2 10−02 9.7 10−01 3.3 10−02

Fourier 1.3 1000 9.4 10−01 −2.5 10−01 3.1 10−01 7.3 10−01 2.6 10−02

PDF 1.3 1000 4.8 10−01 −6.2 10−01 6.9 10−01 3.9 10−01 −9.0 10−03

Minimum, optical depth
IAAFT 3.0 1001 3.2 1001 7.1 10−02 1.0 10−01 1.0 1000 9.7 10−01

Fourier 3.0 1001 3.5 1001 1.7 10−01 2.3 10−01 1.2 1000 −1.0 1000

PDF 3.0 1001 4.3 1001 4.1 10−01 4.5 10−01 1.4 1000 1.7 1000
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Table 1. (cont’d)

Variable or surrogate Mean templatea Mean surrogatea Rel. biasb Rel. RMSE a b

Minimum, transmittance
IAAFT(0) 3.8 10−01 3.8 10−01 6.0 10−03 3.2 10−02 1.0 1000 −1.3 10−03

IAAFT(60) 2.6 10−01 2.6 10−01 1.5 10−02# 5.0 10−02 1.0 1000 −5.7 10−03

Fourier 2.6 10−01 2.7 10−01 3.6 10−02∗ 8.4 10−02 1.1 1000 −4.6 10−03

PDF 2.5 10−01 2.9 10−01 1.4 10−01∗∗∗
1.9 10−01 1.0 1000 2.7 10−02

Minimum, reflectance
IAAFT(0) 4.5 10−01 4.5 10−01 2.3 10−04 2.4 10−02 1.0 1000 −1.9 10−03

IAAFT(60) 5.4 10−01 5.4 10−01 −1.9 10−03# 3.6 10−02 9.9 10−01 3.3 10−03

Fourier 5.3 10−01 5.7 10−01 7.0 10−02∗∗∗
8.1 10−02 1.0 1000 2.3 10−02

PDF 5.4 10−01 6.0 10−01 1.1 10−01∗∗∗
1.2 10−01 1.0 1000 5.8 10−02

Minimum, radiance
IAAFT(0) 3.0 10−02 3.0 10−02 4.6 10−03 5.2 10−02 1.0 1000 1.5 10−04

IAAFT(60) 3.4 10−02 3.5 10−02 3.3 10−03# 7.1 10−02 9.9 10−01 3.9 10−04

Fourier 3.4 10−02 3.7 10−02 6.3 10−02∗∗∗
1.1 10−01 1.0 1000 6.6 10−04

PDF 3.9 10−02 4.2 10−02 5.9 10−02∗∗∗
9.8 10−02 9.3 10−01 5.0 10−03

Minimum, integrated actinic flux
IAAFT(0) 1.5 1000 1.5 1000 1.9 10−03 2.4 10−02 1.0 1000 8.3 10−03

IAAFT(60) 3.7 1001 3.7 1001 2.0 10−03 1.8 10−02 9.9 10−01 4.7 10−01

Fourier 3.8 1001 3.9 1001 2.7 10−02 3.7 10−02 1.0 1000 −6.7 10−02

PDF 3.8 1001 4.0 1001 4.3 10−02 4.9 10−02 1.0 1000 2.9 10−01

aThe unit of the radiances is W m−2 sr−1 µm−1, using a solar intensity of 1 kW m−2. The unit of the integrated actinic fluxes is W m−1 nm−1,
using a solar flux of 1.83 W m−2 nm−1.
bA ∗ indicates that the probability that the deviation (p) is significant with respect to the random error of the MC models is less than 5 %; ∗∗ indicates
that p < 1% and

∗∗∗
that p < 0.1%. A # indicates that p > 5%, i.e. that this deviation is not significant.

the relative RMS error of all radiative properties of the IAAFT
surrogate stratocumuli are less than 1.4% compared to the LES
clouds they are based on.

In case of the mean optical depth only differences for the
Fourier surrogate are possible. For the irradiance and the radiance
the Fourier surrogates deviate most, as here the right PDF is most
important. The too low transmittance for the PDF surrogates
is analogous to the bias found in plane parallel homogeneous
clouds. The actinic flux is too high for the Fourier surrogates
and too low for the PDF surrogates.

To compare the full distributions of the optical properties, the
values of the original fields and their surrogates were sorted and
plotted against each other, see Fig. 10. This results in one line
for every set of originals and surrogates, which should ideally
lie on the dotted line that indicates y = x. If the lines run flatter
this means that the surrogates have less variance in this range of
values. Random shades of grey have been used to make it easier
to follow individual lines. To further compare the distributions
we have also made scatterplots of the standard deviation, and the
minimum of the fields. These are not shown here, but are listed
in Table 1.

The distribution of the optical depth is best captured by the
IAAFT surrogates (Fig. 10a). The standard deviation of the PDF
surrogates has a bias of 71% and consequently also the extreme
values are off. The bias of the standard deviation of the Fourier
and the IAAFT surrogates is only 2 and 1%, respectively. The

distribution of the PDF and the Fourier surrogates is much more
symmetric as those of the originals or the IAAFT surrogates.

The deviations of the distribution of the irradiances are very
similar to those of the optical depth. However, remarkable is that
the standard deviations of the reflectance are too small, showing
biases for the Fourier and the PDF surrogates of 13 and 37%,
respectively.

The standard deviations of the 2-D actinic flux fields of the
Fourier and the PDF surrogates are too low; their biases are
25 and 62%. In the actinic flux fields of the original LES cloud
(and the IAAFT surrogates) the maximum flux is always at the
top. However, in about half of the PDF and Fourier surrogates
the maximum actinic flux is not at the highest level, but one
level (10 m) lower. This is likely due to the difference in the
cloud top structure. Here it should be noted that SHDOM linearly
interpolates between the grid points, and thus reduces the number
of clear boxes in the PDF surrogates.

For all optical properties the power spectra of the PDF surro-
gates where flat. The spectra of the IAAFT and the Fourier sur-
rogates followed that of the originals, except for a scaling factor
in case of differences in the standard deviation of the fields.

4.2. Cumulus

For the cumulus clouds, the accuracy turned out to be very impor-
tant, but the average accuracy of the standard IAAFT algorithm
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Fig. 10. A comparison of the distributions of the optical depth (a), transmittance (b), radiance (c) and IAF (d) of the LES originals and their three
different types of surrogates. The values of the Fourier surrogates were given a negative offset and the PDF surrogates an equal positive offset. The
dotted line represents x = y.

was only 7%. These fields still have too many small clouds that
have not merged to form one or a few larger ones. As a re-
sult, a bias towards a larger reflectance and albedo occurs in the
surrogates. The radiative properties of the best converged sur-
rogates of each pair of cumulus surrogates correspond closer to
those of the originals than those of the worst converged surro-
gates. By repeating the calculation and choosing the best con-
verged surrogates, we were able to reach an accuracy of 4‰.
However, even these surrogate cumulus clouds still showed a
bias.

Therefore, we applied the Stochastic Amplitude Adapted
Fourier Transform algorithm (see Section 2). This algorithm pro-
vided a much better convergence. In the first run, 39 of the 52
surrogates converged fully, by repeating the calculation all sur-
rogates could be made to converge fully. Surprisingly, the surro-
gate cumulus clouds are in the end identical to their underlying
LES clouds, except for translations or reflections, see Fig. 7 for
an example. Thus, the radiative properties of the LES cumulus
clouds and their surrogates will be the same as well. In this case,

the amplitude distribution and the power spectrum are able to
completely describe the cloud structure.

That the surrogates are identical, may be understood by rec-
ognizing that the cumulus fields are almost binary fields; that
is, two thirds of the fields’ standard deviation is determined by
the cloud ‘mask’. Specifically, if we set the LWC of the cloudy
boxes (i.e. LWC > 0.1 g m−3) to the average LWC of all the
cloudy boxes, the resulting binary field has, on average, 68%
of the variability of the original field. By calculating the auto-
correlation function for all permutations of a few short sparse
correlated binary time series, we found that the autocorrelation
function is able to constrain the structure to a great degree. We
expect that the cumulus surrogates will not be identical to their
originals for cumulus clouds with a higher cloud cover or for
cumulus fields with a higher resolution.

We did not create Fourier or PDF surrogates from these sparse
cumulus fields, as they would be completely inappropriate in
this case. Both types of surrogates would have been much more
homogeneous and stratiform as the LES cumulus fields.
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5. Discussion

This section will discuss the limitations and strengths of the
IAAFT surrogate clouds based on the examples from Section 3
and the quantitative evaluation in Section 4. This then leads to
a discussion on the applications that could benefit from these
fields and further work that would be needed.

The IAAFT method does have limitations. The main limita-
tion is that the nonlinearities of its surrogates are static; they do
not originate from nonlinear dynamical equations. This is prob-
ably why the algorithm is not fully able to handle fall streaks,
Bénard cells and other line-like structures. On the other hand
the inclusion of the PDF makes the description with a Fourier
spectrum much more powerful, as can be seen by the surrogate
fields of the sparse cumulus fields.

A theoretical limitation we did not show is that the IAAFT
algorithm cannot generate time series with asymmetric dynam-
ics, e.g. time series with slow rises and fast drops. Formulated
more precisely, on average the dynamics of the IAAFT-generated
surrogate time series will be symmetric. This is a natural conse-
quence of the fact that the overlying structure of the time series
is described by an autocorrelation function which contains only
information on the strength of the correlation between two points
as a function of their distance.

These limitations appear to pose no serious problem for is-
sues of RT. The analysis in Section 4 showed that the radia-
tive properties of the IAAFT surrogate clouds are very close
to those of their original LES clouds. This result, if found to
be generally applicable, greatly simplifies the measurement and
analysis of cloud structure. It is expected that the improvement
of the IAAFT surrogates over the Fourier surrogates and the
PDF surrogates is even larger for thin or broken stratocumu-
lus clouds. A remarkable result is that the surrogate stratocu-
mulus cloud fields that lose their nonlinear Bénard cells still
match the original clouds closely with respect to their radiative
properties.

In order to execute a closure study, the uncertainties due to lim-
ited data and its measurement errors should be closely examined.
In our evaluation we had error-free and complete information on
the 3-D structure of the original cloud fields. Even the most com-
prehensive cloud measurement cannot provide this quantity and
quality. For closure studies, comparing physical and radiative
properties of a cloud field, the limiting factor is thus expected to
be the amount and the quality of the data, not the algorithm or
the statistical description of the cloud field.

In the evaluation of the sparse cumulus fields, we have seen
that the convergence needed to be very high to get good re-
sults for RT. This also means that the initial estimate of the
power spectrum should be very accurate. This accuracy cannot
be reached in a real measurement and as a result a cumulus sur-
rogate based on PDF and spectrum only, will show biases in its
albedo. For closure studies this problem can be solved by includ-
ing a cloud mask from an imager. Preliminary studies with a ver-

sion of the algorithm where every iterative step a cloud mask was
applied, showed good results and smooth transitions at the cloud
boundaries.

As the Fourier phases are kept intact during the spectral adap-
tation, the algorithm changes the structure of the fields only little.
This allows one to impose the PDF on the field, but also for spa-
tial constraints, like a cloud mask or the local scanning values
(see Section 3.5). Other spatial constraints we are working on are
coarse grained mean LWP or coarse grained cloud fraction which
could be derived from satellite measurements. Likely, fields of
cloud top or base height could also be included.

To test the general applicability of the conjecture that our
statistical description is sufficient for RT, a more thorough anal-
ysis would be necessary. More cloud types should be studied. It
should be noted that the structure of the LES stratocumulus fields
used in the analysis did not have much variance in LWP and were
very well behaved compared to real cloud fields. For instance,
there were no multiple cloud layers and the cloud boundaries
were relatively smooth. This well-behaved nature is due to the
idealized atmospheric profiles and the periodic boundary con-
ditions used in LES modeling. Accordingly, using cloud fields
from other types of cloud-resolving models and multifractal or
wavelet-based cloud generators would provide an additional test.
Still, this study using surrogates based on LES clouds gives con-
fidence that these further tests will give positive results.

One could argue that for developing retrievals and parameter-
izations, it is undesirable that all surrogate cloud fields from one
set of statistics have the same radiative properties. Ideally, such
retrievals and parameterizations should be based on as many re-
alizations as possible. However, for closure studies, this property
is a clear vice, and for the development of retrievals and param-
eterizations one can each time use different measurements to
base the surrogates upon. We have, for example, routinely made
surrogate cloud fields from the 2 months of measurements of the
BBC campaign (Crewell et al., 2004).

Compared to fractal cloud generators, the main advantage of
the IAAFT algorithm is that its clouds are based on measured
statistics and not on fractal idealizations of the measured struc-
ture. The multifractal (Schertzer et al., 2002) and wavelet-based
(tdMAP) generators have the advantage that they have a more
comprehensive description of the structure, but the evaluation in
Section 4 of the IAAFT surrogate clouds suggested that for many
applications our statistical description is sufficiently accurate. A
study that would show that or when this holds would help our
fundamental understanding of 3-D RT.

However, we would rather not compare our method to frac-
tal cloud generators, but rather to algorithms that create clouds
based on measurements. Compared to these methods the advan-
tage of the IAAFT surrogate clouds is that its structure is more
realistic. Only the algorithm of Evans and Wiscombe (2004)
has a similar degree of realism. This algorithm describes the
cloud structure in terms of a binary cloud mask in stead of LWC.
Thus, the LWC at the IAAFT cloud boundaries will be smoother.
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Furthermore, due to the iterative nature and the phase preserv-
ing spectral adaptation, the IAAFT algorithm is more flexible
and can more easily integrate spatial constraints by additional
measurements.

6. Conclusions and outlook

The IAAFT (Iterative Amplitude Adapted Fourier Transform)
algorithm is able to generate realistic cloud fields for use in
RT calculations. These cloud fields are described by a power
spectrum and by a height-dependent LWC distribution. As these
synthetic or ‘surrogate’ clouds can be based on the full statistics
from observations, they are ideally suited for empirical studies.
An important application of the surrogate clouds will be closure
studies. Such studies will especially benefit from future versions
of the algorithm that can include various spatial constraints.

Although the surrogate clouds do not capture the entire non-
linear structure of clouds, the evaluation using LES clouds
showed that their radiative properties are (almost) equal to the
LES clouds. For this evaluation gentle homogeneous stratocu-
mulus and sparse cumulus fields were used.

These sparse cumulus fields were identical to their LES orig-
inal, i.e. they were completely described by the two statistical
parameters of the IAAFT algorithm. Thus, the cumulus surro-
gates had exactly the same radiative properties as the LES cu-
mulus clouds. We expect that this result is not valid for cumulus
clouds with a higher cloud cover or made from a LES cloud with
a higher resolution. In practice the power spectrum can not be
measured with sufficient accuracy, real surrogates will thus not
be identical, but rather biases in cumulus surrogates are to be
expected. As these biases are mainly due to wisps of cloud in the
cloud free sections, these biases may be reduced by introducing
a measured cloud mask.

The radiative budget of stratocumulus clouds is also matched
well by the surrogates. The RMS differences of the transmit-
tance and reflectance are less than 0.03% of the budget. The
radiances and actinic fluxes fit better than 2%. These numbers
should be seen as an order-of-magnitude estimation, as they will
be different for other cloud fields. The results for the radiances
and the irradiances were calculated with a Monte Carlo (MC)
model and the differences can be attributed to the stochastic er-
ror of the RT models. Simpler PDF surrogate clouds, which had
no spatial correlations, had much larger differences and these
differences could no longer be attributed to the MC models,
showing that structure is important. Fourier surrogate clouds,
with only the same spatial correlations, also had much larger
differences as the IAAFT surrogates, showing that an accurate
LWC distribution is important. These results are only valid for
the relatively homogeneous LES stratocumulus fields. Sugges-
tions are given in the discussion to study the generality of this
conjecture.

In the future, we aim to focus on utilizing spatial con-
straints, expanding the work in Section 3.5 on iterating local

LWP values. For example, one could combine ground-based
cloud structure measurements with horizontal 2-D cloud-top
height or cloud mask field as measured by an airplane or
satellite.

We have performed 10-Hz scanning measurements with the
microwave radiometer MICCY and the cloud radar MIRACLE
during the BBC and BBC2 campaigns. The high temporal reso-
lution and the spatial sampling of these scanning measurements
will allow better estimates of the LWP distributions of inhomo-
geneous cloud fields than standard zenith measurements and are
ideal for closure studies using surrogate clouds.

Schreiber and Schmitz (2000) have shown that it is possi-
ble to iterate two time series simultaneously (i.e. breath rate
and heart rate), while also taking into account their cross power
spectrum. So one could, for example, generate surrogate cloud
fields using LWC and effective radius statistics simultaneously.
Alternatively, one could utilize cloud LWP and cloud-top height
statistics simultaneously. However, cloud-boundary structure is
much more difficult to describe than cloud-liquid water. Even
the relatively homogeneous altocumulus cloud in this study,
has two cloud layers in some parts and many clouds have
gaps, i.e. no cloud-top height. Many clouds will therefore not
have a useable time series of cloud-top height, and in many
cases we will have to use fractal geometry to describe their
structure. Unfortunately, algorithms to calculate fractal mea-
sures do not have inverse functions, like the Fourier transform;
hence, iterative algorithms to generate surrogate clouds cannot be
constructed.

This problem can be solved by using a global search algo-
rithm, which also promises to converge better. Schreiber and
Schmitz (2000) use simulated annealing to search for time series
with almost arbitrary statistical properties. We are working on
an evolutionary search algorithm to find cloud fields that have
specified properties with respect to cloud-liquid water, cloud
base and top height and number of layers. This method is slow,
but flexible and may be able to handle (multi-)fractal, non-linear
and non-stationary cloud structure measures.

The code of the IAAFT algorithms and many more ex-
amples are available on our website: http://www.meteo.uni-
bonn.de/victor/themes/surrogates/.
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