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[1] This paper investigates the influence of cloud model statistics on the accuracy of
statistical multiple-frequency liquid water path (LWP) retrievals for a ground-based
microwave radiometer. Statistical algorithms were developed from a radiosonde data set
in which clouds were modeled by using a relative humidity threshold and a modified
adiabatic assumption. Evaluation of the algorithms was then performed by applying the
algorithms to four data sets in which clouds were generated in different ways (i.e.,
threshold method, gradient method, and cloud microphysical model). While classical two-
channel algorithms, in this case using frequencies at 22.985 and 28.235 GHz, do not
show a significant dependency on the cloud model, the inclusion of an additional 50-GHz
channel can introduce significant systematic errors. The addition of a 90-GHz frequency
to the two-channel algorithm leads to a larger increase in LWP accuracy than in case of
the 50-GHz channel and is less sensitive to the choice of cloud model. A drizzle case
from the cloud microphysical model shows no significant loss of accuracy for the
microwave radiometer algorithms, in contrast to simple cloud radar retrievals of liquid
water. In case of rain, however, the results deteriorate when the total liquid water path is
larger than 700 g m�2. INDEX TERMS: 3360 Meteorology and Atmospheric Dynamics: Remote

sensing; 3394 Meteorology and Atmospheric Dynamics: Instruments and techniques; 6969 Radio Science:

Remote sensing; 1640 Global Change: Remote sensing; 1655 Global Change: Water cycles (1836);
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1. Introduction

[2] Clouds are still one of the major uncertainties in
atmospheric models, whereby their role in linking radia-
tion and dynamics is ill represented [e.g., Gates et al.,
1999]. Even thin clouds with small amounts of liquid
water serve as effective radiation modulators and cause
large changes in solar transmission. Thus, in order to
describe the variability of solar transmission in numerical
weather prediction and climate models in an adequate
way, it is extremely important to develop instruments and
retrieval algorithms which can observe cloud water, e.g.,
the prognostic variable describing clouds in atmospheric
models, with the highest accuracy possible. For evaluation
of model predicted cloud parameters long-term time series

need to be compared, as currently being done for the
European BALTEX Cloud Liquid Water Network
(CLIWA-NET) [Crewell et al., 2002]. Principally, profiles
of vertical cloud liquid water content (LWC) are needed
for this purpose. Besides sporadic and expensive in-situ
measurements from research aircraft, LWC can be derived
from reflectivity factor (Z) profiles measured by a cloud
radar. However, due to the fact that LWC is proportional to
the total volume of all cloud drops (drop radius cubed) and
Z is proportional to the cloud drop radius to the order of six
[e.g., Ulaby et al., 1981], the conversion of Z to LWC can
have an error of more than one order of magnitude.
[3] In comparison to cloud radars, microwave radio-

meters only have a very limited possibility to derive the
vertical structure of cloud liquid. Since the inverse
problem of deriving LWC profiles from microwave
radiometer measurements is underdetermined, a large
number of solutions for the atmospheric state can be
found to satisfy each combination of measurements.
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However, ground-based passive microwave remote sens-
ing is by far the most accurate method to derive the
vertical integral of LWC or the liquid water path (LWP).
The high accuracy in retrieved LWP and integrated water
vapor content (IWV) achieved by two-channel radio-
meters was demonstrated more than two decades ago
[Westwater, 1978]. Together with their simple operation
these reasons make microwave radiometers well suited to
gather long-term time series needed for atmospheric
model evaluation and improvement.
[4] Typically, the atmospheric brightness temperature

(TB) is measured at one frequency on the wing of the
water vapor line at 22.235 GHz and at a second fre-
quency in the window region around 30 GHz (Figure 1).
The first frequency is chosen so that the water vapor
absorption coefficient is nearly independent of altitude.
Because the emission of cloud liquid water increases
with the frequency squared, the signal at the second
frequency is dominated by liquid water contribution
(Figure 1). From measurements at both frequencies
LWP and IWV can be retrieved simultaneously.
[5] Recently, it has been suggested that LWP retrievals

can be improved by adding a temperature-dependent
frequency around 50 GHz [Bosisio and Mallet, 1998]
or an additional frequency sensitive to cloud liquid water
at 85 GHz [Bobak and Ruf, 2000]. Within this study we
will compare LWP retrieval accuracies obtained with
different frequency combinations obtained from the
Microwave Radiometer for Cloud Cartography (MICCY)
[Crewell et al., 2001] of the University of Bonn.
[6] Existing LWP retrievals are often categorized into

statistical and ‘‘physical’’ algorithms. Pure statistical
algorithms are based on a set of concurrent TB and
LWP values, which are related by some kind of function.
The classical ‘‘physical’’ algorithm finds a solution for
the profiles of temperature, humidity, and LWC such that
the measured brightness temperatures are very close to
the ones simulated from the derived profile of the
atmospheric state [Peter and Kämpfer, 1992]. Since a
large number of atmospheric states can satisfy each
combination of TBs, constraints have to be chosen which
will reduce the degrees of freedom. Therefore, many
LWP retrievals are described as ‘‘physical,’’ but almost
always depend on some sort of statistical assumptions
about the atmospheric state, which are often site depend-
ent [Han and Westwater, 1995]. Hence, statistical infor-
mation of some sort always influences the retrieval. The
statistics for atmospheric temperature and humidity are
relatively well known from radiosonde measurements,
but profiles of LWC are much more difficult to assess.
[7] To investigate the effect of insufficient knowledge

of LWC statistics on LWP retrievals, we focus solely on
pure statistical LWP retrievals. Up to now only very
simple models to estimate the LWC profile from radio-
sonde measurements have been used. A common

approach is to place clouds in a radiosonde profile, where
the relative humidity exceeds a threshold of 95% (TH95).
This method and three others, including one based on a
microphysical cloud model, are presented in section 2 and
are used to generate different cloud model testing data
sets. In section 3 we describe the development of LWP
retrieval algorithms, based on TH95, and regression
techniques for inverting modeled TBs to LWP. In section
4 the algorithms are applied to the testing data sets and the
significance of differences caused by the four different
cloud models is investigated. The effects of larger drops
within the atmosphere, i.e., drizzle and precipitation, on
the retrieval results are shown in section 5. Finally,
section 6 provides a summary of the results.

2. Cloud Liquid Water Profiles

[8] In this section we present three different methods
to obtain representative data sets of LWC from radio-
sonde profiles. Within the development of retrieval
algorithms TBs based on these LWC profiles are simu-
lated to obtain relations between the TBs and LWP.
Generally radiative transfer is drop size distribution
(DSD) dependent in the microwave region, although
DSD effects will only be significant at higher frequencies
(90 GHz) or in rainy conditions. To be consequent, all
radiative transfer calculations in this study are DSD-
dependent and therefore scattering is calculated accord-
ing to Mie theory for all clouds. The cloud DSDs are
estimated as stated in section 2.1.

2.1. TH Methods

[9] Almost all efforts to diagnose LWC from radio-
sonde measurements use a threshold on relative humidity

Figure 1. Microwave extinction due to water vapor,
oxygen, and typical cloud liquid water content of 0.2
g m�3 at 895 hPa. The bars indicate the frequencies used
for algorithm development in this study.

MAR 6 - 2 LÖHNERT AND CREWELL: CLOUD LIQUID WATER RETRIEVAL



(RH) [Wang et al., 1999]. In this study LWC is set by
90% (TH90) and 95% (TH95) thresholds, i.e., cloud
layers are taken to exist in a profile when RH exceeds the
corresponding value. After determining the cloud boun-
daries, we calculate LWC from a modified adiabatic
assumption [Karstens et al., 1994]. Generally, the liquid
water content as calculated for an adiabatic ascent
(LWCad), for example [Rogers and Yau, 1989], is assumed
to be the maximum possible LWC and is corrected for
effects of dry air entrainment, freezing drops or precip-
itation in the modified adiabatic approach. The empirical
correction function used was derived from aircraft meas-
urements of LWC in different types of clouds [Warner,
1955]:

LWC ¼ LWCad 1:239� 0:145 ln hð Þð Þ ð1Þ

with h in m indicating the height above cloud base and h
within the range between 1 and 5140 m.
[10] Size spectra for the derived LWC are described

using the modified gamma distributions [Deirmendjian,
1969]:

n rð Þ ¼ ara exp �brgð Þ; b ¼ a
gr

g
c

ð2Þ

where r is the drop radius in mm, n(r) is the drop density
per unit increment of r, rc is the modal radius and a, a, b,
and g were positive constants. Different distribution
parameters are used for each cloud level depending on
LWC (Table 1). Liquid water clouds were assumed down
to temperatures of �20�C.

2.2. CE Method

[11] An alternative approach for deriving cloud boun-
daries from radiosonde ascents is the gradient method
proposed by Chernykh and Eskride [1996] (in the
following referred to as CE). A cloud is modeled into
layers that satisfy the following conditions:

d2T=dz2 � 0; d2RH=dz2 � 0; ð3Þ

with T denoting the temperature. These conditions can be
interpreted as a region of a RH maximum due to
saturation and a region of weaker temperature decrease
within the cloud due to a pseudo-adiabatic lapse rate.
After cloud boundary detection, Chernykh and Eskridge
[1996] used a diagram according to Arabey [1975] to
determine the dependency of cloud fraction on cloud
temperature and dew point depression. Löhnert [1998]
modified this diagram for the climatological conditions
of Western Europe. Since the cloud models described
above are one-dimensional, i.e., vertical profiles, cloud
fraction cannot directly be taken into account. In order to
consider cloud fraction, which can range from 0 to
100%, cloud fraction was interpreted as the probability
of a cloud to exist above the measurement site.

Consequently, a random number between 0 and 100
was generated and compared with the modeled cloud
fraction. If the random number was smaller than the
modeled cloud fraction, a cloud is assumed to exist
above the radiometer. The LWC profile is then calculated
with the modified adiabatic method as described in
section 2.1.

2.3. Dynamic Cloud Model

[12] In a further approach the 1.5-dimensional, micro-
physical dynamic cloud model (DCM) of Issig [1997] is
used. The DCM calculates LWC in 40 logarithmic radius
classes every 250 m from ground to 10 km height (model
top). This convective model was initialized with the
radiosonde profiles that are also used for the static
modeling in sections 2.1 and 2.2. Convection is initial-
ized diabatically via a radiation module. This type of
cloud modeling accounts for the temporal evolution of a
typical cumulus cloud. Additionally, the derived temper-
ature and humidity profiles are physically consistent with
the LWC profile. However, the model always generates
clouds, and hence, clear-sky cases are not well repre-
sented. A more detailed description of the model is given
by Löhnert et al. [2001].

3. Retrieval Algorithm Development

3.1. Training Data Set

[13] The TH95 training data set, which is used for
algorithm derivation, is based on a 5-year radiosonde
data set consisting of the daily (0000 and 1200 UTC)
ascents from the German Weather Service station Essen
(located at 51.5�N, 7.0�E). The TH95 training data set
exists only of LWP larger than 30 g m�2 and less than
400 g m�2, thereby strictly encompassing only non-
precipitating, cloudy cases. Many radiometer sites are
equipped with additional instruments (e.g., infrared
radiometers and ceilometers), so that the identification
of cloud free scenes can be done independently. The
value 30 g m�2 is chosen because it roughly represents
the detection limit of LWP with two-channel radio-
meters [Crewell and Löhnert, 2003]. At LWP values
larger than 400 g m�2 raindrops will occur and the

Table 1. Drop-Size Distribution Parameters Related to the

Modified Gamma Distribution Depending on LWC and Cloud

Typea

Cloud
Type

LWC,
g m�3 rc, mm a g Author

cu hum < 0.2 4.0 6.0 1.0 C1 Deirmendjian [1969]
cu con 0.2–0.4 6.0 4.0 1.0 C5 Deirmendjian [1975]
Cb > 0.4 20.0 2.0 1.0 C6 Deirmendjian [1975]

aFrom Karstens et al. [1994].
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resulting brightness temperatures will become strongly
drop size dependent especially at higher frequencies
(e.g., 90 GHz).

3.2. Testing Data Sets

[14] In order to evaluate the algorithms, independent
testing data sets are generated with the TH95, TH90, and
CE cloud models using a second set of radiosonde data
(Table 2). The number of cases (clear, cloudy, rainy)
shown in Table 2 vary from model to model because
different cloud models produce different percentages of
rainy, clear and cloudy cases. To create the testing data
sets for the TH95, TH90, and CE cloud models only the
cases with LWP between 30 and 400 g m�2 (cloudy
cases, Table 2) are considered.
[15] A third set of radiosonde data is used to initialize

the dynamic cloud model. After initialization, the model

is run for 2 hours with 40 s time resolution. To reduce the
data volume, only those time steps that differ by more
than 30 g m�2 in LWP from the previous time step are
used. Also only those time steps are considered, where
LWP is between 30 and 400 g m�2. At each of these
times, temperature, humidity, and LWC profiles are
stored for the following radiative transfer.
[16] Among the static cloud models TH90 generates

the most LWP and the thickest clouds due to the
relatively low humidity threshold (Table 2). The CE
model produces the most clear sky cases. Also, the CE
model generates the smallest and the DCM model the
largest LWPs mainly to the corresponding differences in
cloud thickness.
[17] The mean vertical distributions of LWC for the

testing data sets are shown in Figure 2. The mean DCM
LWC profile (Figure 2a) and its standard deviation
(Figure 2b) show a peak between 1.5 and 2 km, whereas
the TH90 and TH95 models have a maximum roughly at
0.75 km. The CE model does not produce a dominant
peak, but rather a more or less uniform distribution
between 0.5 and 3.5 km, meaning that within this range
CE clouds are equally probable at all heights.

3.3. Radiative Transfer

[18] The radiative transfer forward calculations are
carried out with the microwave model MWMOD of
Simmer [1994], which can simulate TBs in the range
from 1 to 1000 GHz. The input parameters are
atmospheric profiles of temperature, humidity, pressure,
and hydrometeors. Gas absorption is calculated for
oxygen and water vapor according to Liebe et al.
[1993], while scattering and absorption due to hydro-
meteors are calculated using Mie theory. For all data sets
TB calculations are carried out at 22.985, 28.235, 50.8,

Table 2. The Number of Cases for All, Clear, Cloudy, and

Rainy Conditions From the Data Sets TH95, TH90, CE and

DCMa

TH95 TH90 CE DCM

Number cases (all) 4325 4325 4325 10104
Number of cloudy cases 1657 1577 1623 5947
Number of clear sky cases 1762 1211 2333 781
Number of rainy cases 906 1537 369 3376
LWPcloudy mean 170 187 143 195
LWPcloudy stddev 102 102 96 101
Number of cloud layers 1.32 1.33 1.32 1.12
Mean cloud thickness, km 0.810 0.828 0.742 1.209

aClear, LWP < 30 g m�2; cloudy, 30 < LWP < 400 g m�2; rainy, LWP
> 400 g m�2. Mean and standard deviation (stddev) of the LWPs from
the cloudy data set (testing data set) are shown. Also shown are the
average numbers of cloud layers and average cloud thickness of a single
cloud layer. The latter two are calculated for cloudy cases only.

Figure 2. (a) Mean LWC profiles and (b) their standard deviations for the TH90, TH95, CE, and
DCM cloud model testing data sets (only cloudy, nonraining cases).
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and 90.0 GHz (Figure 1), which correspond to four
channels of MICCY. The lower two channels represent
the frequencies of the standard two-channel algorithm,
and the 50.8- and 90-GHz channel represent distinct
absorption properties used in prior studies. As shown by
Crewell and Löhnert [2003], the use of more MICCY
frequencies does not significantly increase the accuracy
of LWP retrievals. All calculations and subsequent
algorithm developments are performed at an elevation
angle of 90�.

3.4. Regression Techniques

[19] In this section nine different LWP algorithms
representing different input combinations are derived
using the TH95 training data set. Only those cases
with LWP between 30 and 400 g m�2 are included in
the retrieval algorithm development. A least squares
linear regression model is applied to the training data
pairs of TB/LWP. The size of the vector TB is varied
according to the number of frequencies used in the
retrieval. The general form of the linear retrieval can be
written as

LWP ¼ c0 þ c � TB ð4Þ

with c denoting the coefficient vector with dimension
according to TB. The least squares regression minimizes

c2 ¼
X
k

LWPk � c0
X
l

clTBl;k

 !2

ð5Þ

with k denoting the number of TB/LWP pairs considered
and l the dimension of TB. Minimization gives the
optimal c in the least squares sense as

c ¼ S�1
TBSLWP;TB; ð6Þ

with STB denoting the covariance matrix of TB and
SLWP,TB the vector of cross covariance between LWP and
TB. Although LWP is the predictand and has no
measurement error due to the synthetic generation by
the cloud model, errors will occur due to the following
reasons:
1. An arbitrary TB measurement relates to large

number of atmospheric states.
2. Microwave radiative transfer within clouds cannot

be fully described by a linear function.
3. Since we want to simulate the dependencies of

actual TB measurements on LWP, Gaussian noise
corresponding to the anticipated characteristics of
MICCY (1 K for the lower three channels and 2 K for
90 GHz) was added to the TBs.
[20] Errors in radiative transfer and attenuation calcu-

lations will not affect the accuracies of LWP retrievals in
this study since the algorithms are not applied to real
measurements. The errors that can arise, e.g., due to

dependency on the gas absorption model used or due to
calibration offsets, are described in detail by Crewell and
Löhnert [2003].
[21] To account for possible nonlinearities the regres-

sion technique can be extended using quadratic terms of
TB:

LWP ¼ c0 þ c1 � TBþ c2 � TB2 ð7Þ

This retrieval will be compared to (4) in section 4 using
different frequency combinations. A popular method for
deriving LWP from a two-channel microwave radiometer
is to use optical thickness (t) instead of brightness
temperature [Westwater, 1978; Han and Westwater,
1995] to account for nonlinearities.

LWP ¼ d0 þ d1t1 þ d2t2: ð8Þ

The optical thicknesses are commonly estimated from TB
measurements via the so-called mean radiating tempera-
ture [Hogg et al., 1983], which is either estimated from
the ground temperature or kept constant. The formulation
of (8) can be derived from a simplified form of the
radiative transfer equation where d1 and d2 can be
calculated from the mean mass absorption coefficients of
water vapor and liquid water. These in turn can usually be
derived via regression from ground values of temperature,
pressure and water vapor pressure, and are often left
constant for reasons of simplicity. In this study a linear
regression between LWP and t [Güldner and Spänkuch,
1999] was performed for comparison with the TB
algorithms. Therefore, in total nine algorithms were
developed and are listed in Table 3, which also provides
the notation to distinguish both the frequency combina-
tions and the use of pure linear (L) regression or inclusion
of quadratic (Q) terms.

3.5. Application to the TH95 Training Data Set

[22] The accuracy of the LWP retrieval, when applied
to the TH95 training data set used in algorithm develop-
ment is shown in Table 3. As Table 3 shows, a large
increase in accuracy can be gained from the addition of
one or two channels to the standard two-channel algo-
rithm. The 90-GHz channel is the most valuable when
deriving LWP due to its high sensitivity to LWC. When
all four channels are used, the RMS error between
modeled and retrieved LWP is reduced by a factor of
two. When regarding the relative explained variance
defined as the square of the linear correlation coefficient
(COR2) between modeled and retrieved LWP, roughly
12% of the LWP variance cannot be explained by the
retrieval, whereas the four channel retrieval misses only
3% of the LWP variance. The inclusion of the quadratic
terms for each frequency combination improves algo-
rithm performance slightly. The regression using opac-
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ities instead of TBs is about equivalent to the inclusion of
quadratic terms for two frequencies (Q2).

4. Evaluation of Cloud Model Influence

[23] Each of the nine algorithms derived from the
TH95 data set are now applied to the testing data sets
derived from the TH95, TH90, CE, and DCM cloud
models (cloudy, nonrainy cases only) in order to inves-
tigate retrieval sensitivity to cloud model statistics.

4.1. BIAS and RMS Errors

[24] The root mean square (RMS) and systematic
(BIAS) errors of the different algorithms are illustrated
in Figure 3. As expected, the RMS errors in Figure 3a
show only minor deviations to the RMS values listed in
Table 3. The RMS errors of the TH90 data set are very
similar to the TH95 RMS, but a BIAS of about �5 g m�2

occurs if only two frequencies are used. Note that with
an increasing number of frequencies the systematic error
decreases. The errors when applying the TH95 algorithm
to the CE data set (Figure 3c) are dominated by system-
atic errors when using the 50.8 GHz channel informa-
tion. The applications of L3(50) and Q3(50) result in a
mean underestimation of LWP of about 20 g m�2. This
error is reduced significantly when the 90-GHz channel
is used instead of the 50.8-GHz channel. For the L4 and
Q4 retrieval algorithms, the underestimation effect can
still be clearly seen. The RMS errors are slightly reduced
for all four frequency combinations if the quadratic terms
are used. The errors characteristic of the DCM testing
data set (Figure 3d) are similar to those of the CE testing
data set, but with the opposite sign for the systematic
errors. The inclusion of 50.8 GHz as a third frequency
again introduces a BIAS error in the range of 17.5 g m�2,
but in these cases a LWP overestimation occurs. For all
four data sets the errors of the L2(OT) retrieval algorithm

do not differ significantly from the L2 and Q2 algorithm
errors.

4.2. Relative Explained Variance

[25] The relative explained variance between model
LWP and retrieved LWP is shown in Figure 4 for each
retrieval algorithm and testing data set. Performance of
the different retrieval algorithms applied to the testing
data sets are now compared with COR2 since COR2 is
independent both of the mean LWP and of the BIAS

Table 3. The Different Algorithms and Frequencies Used in this Studya

Algorithm/Predictant Frequencies, GHz RMS, g m�2 COR2

L2/TB 22.985, 28.235 35.3 0.874
Q2/TB 22.985, 28.235, (22.985)2, (28.235)2 34.6 0.880
L2 (OT)/t 22.985, 28.235 34.7 0.880
L3(90)/TB 22.985, 28.235, 90.0 19.8 0.960
Q3(90)/TB 22.985, 28.235, 90.0, (22.985)2, (28.235)2, (90.0)2 17.5 0.968
L3(50)/TB 22.985, 28.235, 50.8 22.4 0.951
Q3(50)/TB 22.985, 28.235, 50.8, (22.985)2, (28.235)2, (50.8)2 21.5 0.955
L4/TB 22.985, 28.235, 50.8, 90.0 17.4 0.970
Q4/TB 22.985, 28.235, 50.8, 90.0, (22.985)2, (28.235)2, (50.8)2, (90)2 15.4 0.976

aAlso shown are the root mean square errors (RMS) and the squares of linear correlation (COR2) between modeled
and retrieved LWP for each algorithm when applied to the TH95 training data set. The algorithms were applied to 1658
cases.

Figure 3. LWP RMS (nonshaded) and BIAS (dark
shaded) errors of the nine algorithms applied to the
different testing data sets.
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error. The general (trivial) tendency shows that the
inclusion of more channels increases the relative
explained variance. The most significant improvement
in COR2 is achieved when a third frequency is added to
the two-frequency algorithm. In fact, the L3(90) and
Q3(90) retrieval algorithms show higher values of COR2

than the L3(50) and Q3(50) algorithms. This result
could also be seen when regarding COR2 in Table 3,
only that now we can also verify this in a more general
way.
[26] To interpret the results in Figure 4 a 99% con-

fidence range (ci) is calculated for each point in Figure 4
using the relationship

ci ¼ COR	 za 1� COR2
� �

=
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
; ð9Þ

with n denoting the number of cases and za being the
quantile of the standardized normal distribution corre-
sponding to 99% (here 2.576 for the two-sided test). The
ci denote the range in which the correlation coefficients
of the universal population are to be expected. With this
criterion all two-channel algorithms do not differ
significantly with respect to the different data sets used.
In comparison, some of the three- and four-channel
retrievals show significant differences, especially when
the COR derived from the CE data set is compared to
COR from the other data sets. This result allows the
conclusion that the two-channel algorithms do not
depend as much on the data set (cloud model) used as
the three- and four-channel algorithms.

4.3. Discussion on Error Sources

[27] Applying the TH95 algorithm to the CE and DCM
data led to significant BIAS errors that dominated the
error characteristics. Specifically, the 50.8-GHz channel

induced large BIAS errors if used in combination with
the lower two channels. These errors arise due to differ-
ences in the mean LWPs of the different testing data sets
(Table 2) and are therefore a statistical phenomenon.
[28] For the L3(50) algorithm applied to the CE data

set, 82% of the retrieved LWP values are underestimated.
These underestimations are due to lower TBs 80% of the
time in the CE model compared with the corresponding
TH95 TBs. The behavior of the BIAS error becomes
clear from inspecting the derived regression coefficients
(Figure 5). In case of L2 the effect of too low TBs is
more or less compensated by the different signs of the L2
coefficients, but in the case of L3(50) this compensation
will not work due to two positive coefficients and much
higher values of the 50-GHz TB in comparison to the
lower frequencies. This explains the negative BIAS of
the L3(50) model. Although the 90-GHz channel is more
sensitive to liquid water than the 50-GHz channel (i.e.,
the same amount of LWC increase leads to a larger TB
increase at 90 GHz than at 50 GHz), the lower value of
the third coefficient of L3(90) in comparison to the third
coefficient of L3(50) makes L3(90) less sensitive to such
a systematic error. A physical reason for this is the higher
water vapor contribution at 90 GHz, which is even
higher than at the center of the water vapor absorption
line at 22.235 GHz (Figure 1), leading to a more indirect
relationship between LWP and the 90-GHz channel. In
fact, the correlation between LWP and the 90-GHz
channel is 0.87, whereas the correlation between the
50.8-GHz channel and LWP is 0.90 for the TH95 testing
data set. We can conclude that the 90-GHz channel
complements the lower two channels better than the
50.8-GHz channel.
[29] In case of the DCM testing data set, TBs are

generally higher than in the TH95 data set due to larger

Figure 4. Relative explained variance between modeled and retrieved LWP in dependency of
retrieval algorithm and cloud model testing data set.
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LWPs, so that the same arguments are valid as for the CE
data set, but with the opposite sign.

5. Effect of Precipitation

5.1. Influence of Drizzle

[30] The occurrence of drizzle particles can lead to
large uncertainties when using cloud radar reflectivities
alone to determine microphysical cloud properties [Fox
and Illingworth, 1997]. Since microwave radiometers
and cloud radars are often used in combination to infer
LWC profiles from nonprecipitating clouds [Frisch et
al., 1995; Löhnert et al., 2001], one must also need to
know how sensitive microwave radiometer retrieval
algorithms are to clouds containing moderate amounts of
drizzle.
[31] In contrast to the three static cloud models (TH95,

TH90, CE) the DCM calculates drop-size spectra
throughout liquid clouds. These spectra can be used to
identify drizzle cases, i.e., periods where larger drops
with significant terminal velocities are present. In this
study the size range of drizzle drops was set to radii
from 50 to 400 mm and drizzle water path (DWP) is
defined as the liquid water path due to drops between 50
and 400 mm in size. To test if the drizzle has any
influence on the LWP retrieval, the DCM case with
maximum DWP (32 g m�2) is used as input to a
modified version of MWMOD [Thiele, 2001] incorpor-
ating LWC drop-size spectra as specified by the DCM.
As a consequence, brightness temperatures (TBDSD)
could be simulated using the original spectra, instead of
using a LWC-dependent gamma distribution as described
in section 2.1.

[32] Application of the retrieval algorithms to TBDSD

(Figure 6) does not produce any significant differences in
LWP (<2 g m�2) compared to the results obtained from
application to TBs generated by parametrized DSDs
containing no drizzle droplets. Thus, moderate amounts
of drizzle are not expected to have a significant impact
on the accuracy of LWP retrievals and do not need to be
considered when deriving algorithms. Also shown in
Figure 6 is the LWP derived from radar reflectivities
(Z) using a standard Z-LWC relation. Here the drizzle
droplets lead to an enormous overestimation of LWP,
showing that cloud radar retrievals are extremely sensi-
tive to drizzle. If the radar reflectivity is calculated
without drizzle content (only contributions from drop

Figure 5. Derived regression coefficients for the algorithms L2, L3(50), L3(90), and L4.

Figure 6. Impact on LWP retrieval when using an
explicit DSD and a parametrized DSD to calculate TBs.
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radii less than 50 mm) the cloud radar LWP retrieval is
much more accurate.

5.2. Application to Raining Cases

[33] During continuous microwave radiometer obser-
vations of LWP it is important to discriminate between
cloudy and rainy cases since rain will cause a diminished
accuracy in LWP retrieval. Czekala et al. [2001] have
proposed a method to discriminate rainwater from cloud
liquid by polarized microwave radiometry. If polari-
metric information is not available, discriminating light
to moderate rain cases from cloudy cases is difficult,
especially when the microwave radiometer is a stand-
alone instrument without any additional rain screening
information. Many times light rain will evaporate on its
way to the ground. Rain may also be present, but not
reach the radiometer, due to wind shear or a tilt in
elevation of the radiometer. Considering these cases it is
necessary to estimate how the TH95 algorithm performs
during light to moderate rain cases since they cannot be
completely filtered out. To test this sensitivity, rain is
calculated for those cases of the TH95 cloud model data,
where a LWP threshold of 400 g m�2 is exceeded. In this
case an additional liquid water contribution is assumed,
which is equally distributed as LWCrain from the ground
level to the freezing level [Simmer, 1994], defining the
rainwater path (RWP), whereby the DSD of LWCrain is
modeled according to Marschall and Palmer [1948]. We
will refer to the sum of the cloud water LWP and the
additional RWP as total water path (TWP).
[34] In the following sensitivity study, 524 TH95 rain-

ing cases are used with TWP ranging from 400 to 1000 g
m�2. The BIAS and RMS errors that result for each
retrieval algorithm are illustrated in Figure 7. The algo-

rithms with quadratic terms of the brightness temper-
atures are now inaccurate, causing RMS errors up to 300
g m�2, mainly caused by systematic overestimations.
[35] Since the errors of the linear algorithms are less

dramatic, they are analyzed in more detail. As Figure 8
shows, the RMS and BIAS errors for these algorithms
depend on the magnitude of TWP. The L2 and L3(50)
retrievals show increasing positive BIAS errors with
increasing TWP, whereas L3(90) shows increasing neg-
ative BIAS errors with increasing TWP. For the L4
algorithm compensating effects lead to much smaller
errors. Since classes of low TWP values are not affected
by large BIAS errors, overall errors are in the range of
15–20% for TWP < 700 g m�2. So, the retrieval
algorithms might still be able to retrieve useful TWP
values for values less than about 700 g m�2 even during
rain cases. These error characteristics should not be
generalized, since the algorithms are only applied to
the TH95 data set and rain is only generated in one
specific way as described in this section. A general-
ization would not only require different, independent
data sets of TWP, but also different rain parametrizations,
which go beyond the scope of this paper.

6. Conclusions

[36] For statistical LWP retrievals, RMS errors can be
reduced by using an increasing number of frequencies. In

Figure 7. Total Water Path BIAS (dark shaded) and
RMS (nonshaded) errors in dependency of algorithms for
raining cases.

Figure 8. TWP BIAS (dark shaded) and RMS (non-
shaded) errors for raining cases evaluated in four classes
(C1, C2, C3, C4).
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this study, the relative unexplained variance between
‘‘true’’ and retrieved LWP is reduced from 12% for a
common two-channel algorithm to 3% for a four-channel
algorithm. However, systematic errors due to different
cloud model statistics become more significant as more
channels are used. Specifically, when the 50.8-GHz
channel is combined with the lower two channels, the
algorithm accuracy depends very much on the cloud
model used. In terms of LWP retrieval accuracy, the 90-
GHz channel and the lower two channels complement
one another better than the combination of the 50-GHz
channel with the lower two channels. BIAS errors due to
the different cloud model data sets are reduced and
additionally the correlation between modeled and
retrieved LWP is higher. Common two-channel algo-
rithms are probably most suitable for climate effects,
since they produce nearly BIAS free results. A statement
of LWP accuracy for a certain retrieval algorithm con-
taining statistical information should always be given in
relation to the specific cloud model data set that was used
to derive the retrieval algorithm.
[37] Different cloud models represent different pos-

sible states of the cloudy atmosphere. To best
describe the universal state of the cloudy atmosphere,
the cloud statistics used for algorithm development
should contain a mixture of different statistics from
different cloud models. Also, cloud data from 3-D
cloud resolving models might help to create more
representative statistics. The inclusion of physical
constraints in the algorithm, e.g., including the con-
sistency of the radiative transfer with the retrieved
LWP or data from other remote sensing instruments
(e.g., ceilometer, infrared radiometer, cloud radar) are
strongly suggested.
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