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Abstract. The increasing availability of quality con- 
trolled remotely sensed data (e.g. products from weather 
radar networks) as well as enhanced computer capacity 
allows an efficient use of these data in numerical weather 
prediction (NWP) models. In this paper two differ- 
ent assimilation techniques for radar measurements in 
mesoscale models are presented: a physical initialization 
(PI), currently under development at the University of 
Bonn, and a latent heat nudging (LHN) method imple- 
mented at the German Weather Service (DWD). Both 
algorithms are designed for the non-hydrostatic limited- 
area model LM (Lokal-Modell) of DWD. Input data are 
standard DWD measurements: national radar compos- 
ites (reflectivities) and synoptical observations (temper- 
ature and dew point). Within the PI scheme the LM 
profiles of vertical wind, specific water vapor, and cloud 
water content are adjusted in such a way, that the model 
reproduces the radar derived precipitation. In the LHN 
scheme the prognostic variables temperature and spe- 
cific humidity are changed. In PI and LHN runs with 
synthetic radar data the life-cycle of a single convective 
storm was well represented. 
0 2000 Elsevier Science Ltd. All rights reserved. 

1 Introduction 

Numerical prediction of precipitation strongly depends 
on the accurate representation of the initial state of the 
atmosphere and the parameterization of precipitation 
in the model. An error in the initial state can amplify 
through the modelling process and result in drastic vari- 
ations of the predicted precipitation fields. Typically 
NWP model runs are initialized in a dry state and sev- 
eral hours pass until the hydrological cycle is established 
(spin-up time). A model consistent assimilation of pre- 
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cipitation reduces this time significantly and makes now- 
casting possible. Furthermore, the forecast of surface 
pressure, precipitation, and dynamics will be improved. 

There are two basic approaches for data assimilation: 
sequential or real-time assimilation, which only consid- 
ers observations made in the past until the time of anal- 
ysis, and non-sequential or retrospective assimilation, 
where observations from the future can be used, e.g. in 
a reanalysis exercise. Another distinction can be made 
between methods that are intermittent or continuous 
in time, whereas the latter is physically more realistic. 
Compromises between these approaches are possible. 

Various techniques for assimilating precipitation data 
in NWP models have been developed. They differ in 
their numerical costs, their suitability for real-time data 
assimilation, and the model variables adjusted. 

In three-dimensional variational data assimilation me- 
thods all relevant meteorological fields are modified si- 
multaneously at every observation time. Afterwards, 
the forecast is continued on the basis of the modified 
fields. The UK Met.Office has developed such a tech- 
nique for operational use (Barker, 1996). Detailed in- 
formation about the ‘three-dimensional variational data 
assimilation method was published by Courtier et al. 
(1998), Rabier et al. (1998), and Andersson et al. (1998). 

Zupanski and Mesinger (1995) proposed a four-dimen- 
sional variational data assimilation (4DVAR) technique 
for precipitation data. Its basic idea is to minimize 
the difference between time series of objective analyses 
and model forecasts variational over a finite time period 
(Daley, 1991) considering the error characteristics of the 
observations and the model (Treadon, 1996). Disadvan- 
tages of 4DVAR are its great computional costs and the 
complex inversion of the nonlinear processes (e.g. the 
parameterization of precipitation) in an adjoint model. 

The physical initialization, first mentioned by Krish- 
namurti et al. (1984), is similar to continuous data as- 
similation providing the information to the model every 
timestep. The PI method focuses on consistent model 
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physics, which can generate the assimilated precipita- 
tion data. The similarity algorithm, the cumulus pa- 
rameterization, and the algorithm, which restructures 
the vertical distribution of humidity, were inverted (Kr- 
ishnamurti and Bedi, 1996). During the pre-forecast 
nudging phase the moisture and wind fields are modified 
by assimilating satellite-derived rain rates and outgoing 
longwave radiation (Krishnamurti et al., 1993). 

A fourth approach of assimilating precipitation is the 
latent heat nudging, where increments of moisture and 
temperature are added throughout the pre-forecast pe- 
riod (Jones and Macpherson, 1997). Manobianco et al. 
(1994) applied this technique to an extratropical cyclone 
by using satellite derived precipitation. They found an 
improved forecast of the cyclones position even when 
the rain rate is not correct. 

For the non-hydrostatic limited-areamodel LM (Lokal- 
Modell), which is the current operational NWP model 
of the DWD, precipitation assimilation is approached 
in two different ways. A latent heat nudging (LHN) 
technique, mostly comparable to the method presented 
by Jones and Macpherson (1997), was recently imple- 
mented. The physical initialization (PI) scheme, cur- 
rently under development at the University of Bonn, is 
based on the ideas of Krishnamurti et al. (1984). It is 
particularly designed for non-hydrostatic models (verti- 
cal wind nudging) and extratropical areas. In contrast 
to Krishnamurti et al. (1984) our scheme utilizes radar 
instead of satellite data as input. 

This paper is organized as follows: Section 2 gives a 
brief summary of the LM. The input data for the PI 
and the LHN method are summarized in sect. 3. In 
sects. 4 and 5 both assimilation techniques are explained 
in detail. Simulation results for a sensitivity study for 
July 13, 1999 are presented in sect. 6. 

2 Lokal-Model1 

The LM (Doms and Schattler, 1999), which is part of the 
new NWP system of the DWD, started routine opera- 
tion on December lst, 1999 with a horizontal resolution 
of 7 km. In the simulations presented in this paper the 
model (version 1.27) was run with 2.8 km horizontal res- 
olution for an area of approximately 400 km x 400 km in 
the northern part of Germany (Fig.1). 

The initial and boundary fields for the LM forecast are 
provided by the Deutschlandmodell, which is a hydro- 
static mesoscale model with 14 km gridsize and 30 ver- 
tical levels. The LM has a generalized terrain-following 
sigma coordinate, which divides the atmosphere into 
35 levels. The prognostic model variables calculated on 
an Arakawa-C-grid are the wind vector, temperature, 
pressure, specific water vapor, and cloud water content. 
Rain and snow flux are diagnostic variables. The in- 
tegration timestep is 30 seconds. The model includes 
a grid-scale cloud and precipitation scheme as well as 

a parameterization of moist convection (Tiedtke mass 
flux scheme). However, for this study the convection 
parameterization was switched off, because it was as- 
sumed that convection will be resolved by model reso- 
lution. Further characteristics of the LM are a level-2 
turbulence parameterization, a delta-Zstream radiation 
transfer scheme, and a 2-layer soil model. 
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Fig. 1. DWD radar network and orography of the LM domain. 
The circles marking each radar site have a radius of 100 km. 

3 Input Data 

Both assimilation techniques, physical initialization and 
latent heat nudging, use DWD standard observations as 
input. 

0 national radar composite 
The two-dimensional product with a horizontal res- 
olution of 4 km is provided operationally by the 
DWD radar network every 15 minutes and contains 
six reflectivity classes. The mean reflectivity of each 
class (20~s in mm6/m3) is converted into a rain 
rate (RR’,,, in mm/h) following the Z-R relation 
for the DWD radar network (Schreiber, 1997) 

(1) 
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The rain rate is converted into a precipitation flux 
(RROBS in kg/m2s). 

l synoptic ground observations 
Temperature (Toss in K) and dew point (~0~s in 
K) in 2m height are measured at the DWD synoptic 
ground stations at least four times a day. The mean 
distance between the stations is about 30 km. The 
lifting condensation level (LCL in m) is calculated 
according to 

LCL = 121 (T0B.s - TOBS) . (2) 

Within the data pre-processing, rain rates and lifting 
condensation levels are interpolated linearly in time and 
space to LM timestep and resolution. 

The error characteristics of the precipitation estimates 
are also relevant. Several sensitivity studies, in which er- 
rors were deliberately introduced into the precipitation 
data found, that positional errors led to a significantly 
reduced forecast improvement. In contrast, rate errors 
degraded the forecast to a lesser degree (Manobianco 
et al., 1994). Therefore, the crude resolution of the 
observed radar reflectivities (only six classes) is not a 
serious problem. 

4 Physical initialization 

Within the PI scheme the model and boundary fields 
of vertical wind (w in m/s), specific water vapor (qu 
in kg/kg), and cloud water content (qc in kg/kg) are 
modified (Tab.1). Currently, the cloud top height (zct 
in m) at model gridpoints with observed precipitation 
is temporally and spatially constant. A more accurate 
value can be derived from three-dimensional radar prod- 
ucts, where the maximum echo heights are assumed to 
be a first guess for the cloud top height. Satellite and 
radiosonde data may contribute additional information. 
The cloud base height (zcb in m) is set to the LCL de- 
rived from synoptic observations according Eq.(2). In 
the PI scheme the LCL is used instead of the observed 
cloud base height, because many synoptic ground sta- 
tions do not measure this parameter at night. 

The vertical wind inside a cloud, defined by Zct and 
zcbr is derived assuming a simplified precipitation mech- 
anism. This mechanism is based on the continuity equa- 
tions for the partial densities of saturated water vapor 
(p: in kg/m3) and precipitable water (~1 in kg/m3): 

ap;/at = -V(pZv) -K (3) 

dplfdt = -v(Plvl) + K 1 (4) 

where v and v1 are the three-dimensional air and water 
velocity vectors and K is the conversion term due to 
condensation and evaporation. Adding both equations 
and splitting each term into a horizontal and a vertical 
part (stationarity assumed) leads to: 

d(P?JJ) vh(dvh) + ---&- + vh(PIvh,l) + 
WPlW) 
------=o, (5) 8Z 

Table 1. LM variables modified within the PI scheme (z,,,f: 
height of surface topography, 4: relative humidity, q: : saturation 
specific humidity) 

height interval RROBS > 0 RRoss < 0 

z >.zct w=o w=o 

t-h,,,,, = 75 Qv = &,MOD 

qc = cl qc = 0 

Zct 2 2 2 zcb w = W(Z,RROBS) w=o 

qv = $MOD Pv = ‘h,MOD 

‘h = &~TMOD,%,MOD) qc = 0 

t<zcb w = +cb) .:;:;:;;, w=o 

%I = q;,MOD(zCb) G’v = ‘h,MOD 

qc = 0 qc = 0 

where plwl is the precipitation flux (RR in kg/m2s). 
Note that RR has the same sign as the vertical wind. 
Neglecting the horizontal transport of precipitable water 
leads to: 

Wp*w) c3RR 
vh(P;Vh) + + = -- ’ 

dZ 

The precipitation flux at the surface is derived from 
radar observations according Eq.( 1). At present, the 
profile of the precipitation flux has a very simple form: 
beneath the cloud base evaporation is neglected and in- 
side the cloud the precipitation flux decreases linearly 
from the cloud base to the cloud top: 

RR(z) = RR(z,b) 
Zct - z 

Zct - zcb 
(7) 

It is also assumed that the vertical wind at the cloud top 
vanishes. In order to derive an equation for the vertical 
wind, the structure of the horizontal divergence of satu- 
rated water vapor in Eq.(6) has to be approximated. A 
sinusoidal profile accomplishes all requirements: 

with 

C= RR(%) r - 

Zct - Zzb 2 

(8) 

The horizontal divergence of saturated water vapor van- 
ishes at the cloud base and becomes maximal at the 
cloud top. Inserting (7) and (9) in (6) leads to: 

a(ptw)= 
az 

After discretization of Eq.(lO) an expression for the ver- 
tical wind inside the cloud at model level k can be de- 
rived: 

RR(zcb) 
p:,k-lwk-1 - (Zk-1 - zk& t _ z,b 

c 

‘X Zk--l/2 - zcb 
2 111 . (11) 

Zct - &b 
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The term 

(12) 

in Eq. (11) expresses the ratio between the vertical fluxes 
of saturated water vapor and liquid water at the cloud 
base. Its value characterizes the shape of the vertical 
wind profile. In all the following simulations c is set 
to 0.5 matching a mean observed w profile for raining 
clouds. The parameter c is the only tuning parameter 
in the simplified precipitation mechanism. 

The maximum relative humidity (rhmaz) above &t is 
fixed to 75%. Inside the cloud saturation is assumed. 
Below the cloud base the specific humidity is equal to 
the saturation specific humididy at the cloud base. 

The vertical wind outside the cloud is approximated 
as follows: above the cloud the vertical wind is set to 
zero and beneath the cloud a linear gradient is assumed 
(Tab.1). 

The specific cloud water content above and beneath 
the cloud is assumed to be zero. If the temperature 
inside the cloud is less than 253.16 K the adiabatic liquid 
water content q&ad is calculated according to Hargens 
(1993): 

where pair is the density of air, cp is the specific heat at 
constant pressure, L is the latent heat of vaporization, 
Fd is the dry adiabatic and Fs is the pseudoadiabatic 
lapse rate. Observations have shown that clouds ex- 
ist mostly of super-cooled water at temperatures above 
253.15 K (Rogers and Yau, 1989). Moreover, the LM 
version used in this study contains no ice scheme. The 
reduction of the liquid water content by entrainment of 
unsaturated air, precipitation formation, and freezing is 
considered by Warner (1955): 

q&) = q&ad [-0.145 ln(Z - Z&) + 1.2391 . (14 

Eq.(14) provides the modified.specific cloud water con- 
tents for the PI scheme. 

At gridpoints without observed precipitation the ver- 
tical wind and the specific cloud water content are set 
to zero, the specific water vapor content remains un- 
changed. 

5 Latent heat nudging 

The LHN technique implemented at the DWD for the 
LM is briefly described in this section. More details can 
be found in Jones and Macpherson (1997). 

Radar derived and model rain rates (RRoss and 
RRMOD) are blended at each timestep: 

RR=cY*RR~Bs+(~-Q).RRMoD. (15) 

The weighting factor cx is a function of temporal and 
spatial distance to the radar observation. For large dis- 
tances cy is small and the weight of the observation is 
reduced. This is a simple estimation of errors in the 
radar rain rates. 

The model profiles of latent heat release (ATLH,MOD) 
are scaled as follows: 

cp AT,, = 
RR 

RRMOD 
Cp ~TLH,MOD . (16) 

If RROBS = 0 and RRMOD > 0 model latent heat- 
ing is suppressed. If RROBS > 0 and RRMOD = 
0 the scheme is searching for a nearby gridpoint with 

RRMOD~ RRoss. Otherwise a ‘Lclimatological” pro- 
file is selected. 

The numerical noise is controlled by vertical (hori- 
zontal) filtering of the heating profiles (increments). Up- 
scaling and downscaling are limited due to absolute lim- 
its for the increments. 

The LHN scheme includes also a humidity adjust- 
ment. If the heating is reduced, qu is decreased in order 
to maintain rh. Otherwise qv is increased to reach 100% 
relative humidity over the nudging timescale. 

6 Sensitivity study 

Three LM forecasts are performed for July 13, 1999: a 
control run (without any changes in the model code), 
a run with PI, and one with LHN (all initialized at 
12 UTC). For a better understanding of the results, a 
temporally and spatially fixed precipitation pattern is 
assimilated specified for a real atmospheric state of a 
convective situation. The artificial precipitation area 
with an extension of approximately 950 km2 (Fig.2) is 
located in the south-eastern part of the model domain. 
Its maximum rain rate is 15 mm/h. 

The forcing period is one hour for the LHN and 15 min- 
utes for the PI run with a one hour free LM run after- 
wards. As already mentioned, the LHN method uses a 
nudging term in the thermodynamic equation, while in 
the PI scheme the LM profiles of w, qv, and qc are re- 
placed by modified ones at the beginning of each time- 
step in the assimilation period. Note that in the PI 
scheme the vertical wind and humidity forcing is fixed 
during this time. A more consistent nudging method for 
the PI will be implemented soon. Then the forcing pe- 
riod of the PI and the LHN run will be equal (one hour). 
The tuning parameter c in Eq.(12) is 0.5 as mentioned 
above. In the PI run the specific cloud water content in- 
side the artificial precipitation area is not modified. The 
cloud top height is 4000 m, whereas the cloud base is set 
to the LCL derived from synoptic ground observations. 

In the control run (not shown) only single precipita- 
tion cells of low intensity are simulated one hour after 
initialization and the vertical wind field has no charac- 
teristic structures. The results of the PI and LHN runs 
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13/07/S9 1200 UTC 17215 UK 13~15 UTC 
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Fig. 2. Horizontal sections of precipitation rate (gray shaded) and 
near surface wind (barbs in z=lOO m) for the PI (upper panel) 
and the LHN run (lower panel). Note that the time intervals 
are different. The square indicates the location of the artificial 
precipitation area. 

at the beginning/end of the assimilation period and af- 
ter one hour free LM run are shown in Fig.2 and 3. It 
has to be noted that the time intervals are different, be- 
cause the forcing period in the LHN run is longer than 
in the PI run. 

The thermal forcing (LHN) and the modification of 

20, qv, and qc PI) in its current implementation, re- 
sult in comparable influence on vertical velocity and 
flow patterns. In the presented case, the evaporation 
of precipitation in a dry boundary layer below the cloud 
base creates strong downdrafts and low level divergence. 
In the LHN run this already happens during the one 
hour forcing period, while in the PI run, due to the pre- 
scribed w profiles, this occurs in the one hour free LM 
run (Fig.3). There is no precipitation simulated at the 
initialization time (12 UTC) due to a lack of cloud water 
in the LM analysis. The slight temperature differences 
at 12:15 UTC (PI) / 13:00 UTC (LHN) shown in Fig.3 
are mainly caused by different times of model output. 
For a better understanding of the differences between 
both runs, the temporal resolution of model output are 
to be adapted. 

7 Summary and discussion 

In order to incorporate radar derived precipitation data 
into the LM, the present study developed an assimilation 
method executing physical initialization. Afterwards, a 
simple nudging of vertical wind, specific water vapor, 
and cloud water content was conducted. Another assim- 
ilation approach is the latent heat nudging implemented 
at the DWD and similar to the method developed by 
Jones and Macpherson (1997). 

The effects of both assimilation techniques on the 

rh [Xl T WI 

!J 0 w m 

1215 (PI) 15:oo (LHN) is:15 (PI) 1400 (LHN) 

w [m/a] Vv. [10-/a] I [m/s] Vv. [10+/s] 

rh 1x1 T WI rh [Xl T [Kl c 
I ?.a m 

Fig. 3. Profiles of vertical wind (w), temperature (T), relative 
humidity (A), and horizontal wind divergence (Vvh) at gridpoint 
(111,60) for the PI (open circles) and the LHN run (close circles). 
Note that the time intervals are different. 

forecast for July 13, 1999 were shown. For a better 
comparison of the results, a temporally and spatially 
fixed rainfall area was assimilated. In both LM runs 
(PI and LHN) the life-cycle of a single convective storm 
was well represented. The flow and precipitation pat- 
terns/amounts were almost identical. The life-time of 
the artificial cell was less than two hours, which is com- 
parable to observations. 

On the basis of this sensitivity study it is not possible 
to determine whether the spin-up time and the position 
error of the precipitation forecast are reduced or not. 
Therefore, assimilation runs with real radar data has to 
be conducted. 

Moreover, the LM simulation was not long enough to 
perform statistical investigations. Comparing forecasted 
and measured precipitation by means of objective skill 
scores offers the opportunity to easily assess the quality 
of the weather forecast model (Jones and Macpherson, 
1997). When the radar measurement is converted into 
a rain rate, conventionally by a simple Z-R relation, the 
propagation of the radar beam in the three-dimensional 
space as well as the effects of attenuation by hydrome- 
teors and atmospheric gases are neglected. The direct 
comparison of radar reflectivities, measured and fore- 
casted, reduces some of the uncertainties pertinent to 
the comparison of modelled to radar derived precipita- 
tion. This can be done with the radar simulation model, 
RSM, (Haase and Crewell, 2000). The RSM is able to 
simulate radar reflectivities of any kind of radar situated 
within the LM domain, and hence allows a quick quality 
control of the predicted hydrometeor components. 

Further sensitivity studies have shown that the PI 
is more suitable for nowcasting convective than frontal 
events (Gross et al., 2000). For stratiform precipitation 
events compensating downdrafts are to be considered. 
Additional information about the cloud top height as 
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well as the vertical structure of the radar derived rain 
rate will have a positive effect on the assimilation of 
precipitktion. 

Despite the above mentioned problems, the results 
of the present study are encouraging. Additional bene- 
fits of both assimilation approaches are low computional 
costs and the fact that solely operationally measured 
data are used. 
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