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Abstract

Atmospheric Rivers (ARs) are long and narrow bands of strong water vapour
transport in the mid-latitudes. When having landfall, they are responsible for
storm surges and major floods in coastal regions. Furthermore, they contribute to a
warming of the arctic troposphere because water vapour, being the strongest green-
house gas, is transported to high latitudes. Past studies have investigated the
vertical structure of ARs with dropsondes launched from research aircrafts. In
this thesis, an AR event captured by the High Altitude and Long Range Research
Aircraft (HALO) during the North Atlantic Waveguide and Downstream Impact
Experiment (NAWDEX) campaign is investigated with dropsondes and microwave
observations. The goal is to assess the benefit of microwave remote sensing for
investigating cross sections of ARs. A part of this is to improve the horizontal
resolution, which is usually low when only dropsondes are involved. Regression and
Optimal Estimation (OE) retrievals are built to derive temperature and humidity
profiles out of measurements from a multi-channel MicroWave Radiometer (MWR)
onboard HALO. The retrieval output is compared with dropsonde measurements
and data from the Integrated Forecasting System (IFS) from the European Centre
for Medium-range Weather Forecasts (ECMWF). Structures of equivalent potential
temperature, that are seen by IFS and dropsonde measurements, are confirmed with
striking resemblance by the retrievals. Strong horizontal gradients at the AR bound-
aries are better resolved than in the dropsonde data. Subsequently, the humidity
cross section of the AR is analysed. The regression, dropsonde and IFS data agree
with the findings of previous studies, denoting high specific humidity in the upper
troposphere that is usually found in the lowest 1500m in mid-latitudes. The tilt
of the AR and horizontal gradients at its boundaries are represented more clearly
by the regression and IFS data than by the dropsonde measurements. Possible
improvements of the methodology are given in the conclusion.
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1 Introduction

It is generally accepted that we live in a warming climate, allowing the air to take up more
moisture before being saturated according to the Clausius Clapeyron equation (Lavers
et al. 2013, Gimeno et al. 2014). Atmospheric Rivers (ARs), which are present at all
times around the globe, are responsible for up to 90% of poleward moisture transport in
the mid-latitudes, even though they cover only 10% of the total longitudinal length (Zhu
and Newell 1998, Nash et al. 2018). As water vapour is the strongest greenhouse gas, ARs
may contribute to the amplification of Arctic warming (Alexeev et al. 2005, Graversen
et al. 2008, Yang et al. 2010, Screen et al. 2012, Komatsu et al. 2018) — a feature known
as Arctic Amplification (Serreze and Francis 2006, Serreze and Barry 2011).
Past studies about ARs have focussed on understanding their general structure, im-

pacts, predictability and effects in a changing climate. Due to the extreme precipitation
and winds accompanied by ARs, their landfall on coastlines (e.g. North America, Nor-
way and Scotland) often leads to severe floods, storm surges and landslides (Lavers and
Villarini 2013, Lavers et al. 2013, Gimeno et al. 2016). According to Waliser and Guan
(2017), up to 75% of extreme wind and precipitation events along affected coastlines are
related to ARs. Orographically induced ascent of the transported airmass leads to fur-
ther intensification of precipitation (Ralph et al. 2005, Neiman et al. 2008). During such
events, the melting level is usually shifted to higher altitudes because a streak of warm
and moist air flows over the mountains so that liquid precipitation is spread over a greater
area, further increasing the flood risk (Neiman et al. 2008). Ralph et al. (2006) found
that 7 out of 7 floods of the Russian River in California originated from landfalling ARs
(e.g. Fig. 1). However, in some arid regions, such as California, ARs often end drought
periods, providing up to 50% of the total water resources (Dettinger et al. 2011).
In order to estimate the flood risk and manage water supply, it is important to un-

derstand ARs in great detail to represent them well in numerical models for both cli-
mate projections and weather prediction. In recent studies, the intensity of ARs is ex-
pected to increase in a warming climate because the air can take up more moisture before
saturation is reached (Lavers et al. 2013, Gao et al. 2016). Additionally, as many ARs
are closely related to cyclones, they tend to occur more frequently due to an interaction
of thermodynamic and dynamic processes (changes of the stormtrack density and equa-
torward excursions of Rossby waves) (Barnes and Polvani 2013, Lavers et al. 2013, Gao
et al. 2016). The occurrence will increase in higher and reduce in lower latitudes along
with the projected shift of the stormtrack.
In Numerical Weather Prediction (NWP), the occurrence is generally well predicted

while the timing and position of the landfall still suffer from inaccuracies, especially over
lead times of several days (Lavers et al. 2013, Wick et al. 2013, DeFlorio et al. 2018).
Furthermore, Ralph et al. (2010) identified a negative bias in NWP models concerning
the strength of extreme precipitation events. To mitigate hazards of floods and prepare
dams to hold the water masses, several days of lead time are a necessity (Ralph and
Dettinger 2011, Paltan et al. 2017). According to Jackson et al. (2016) and Guan and
Waliser (2017), coarse climate models, with a grid size larger than 1.5◦, perform worst
regarding the detection of landfalling ARs.
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It is clear that the structure of ARs needs to be investigated in greater detail to improve
their representation in NWP and climate models. As ARs mainly occur over the data-
sparse oceans, they are almost exclusively monitored by satellites (Neiman et al. 2008,
Ralph et al. 2017a). To investigate their structure in detail, expensive field campaigns
have to be carried out. Ralph et al. (2004, 2005, 2017b) used dropsondes — deployed by
aircrafts over multiple campaigns — to create vertical cross sections of ARs. Dropsondes
provide information in high vertical, but poor horizontal resolution because only a limited
number can be deployed during a flight and the number of flights is likewise limited.

Figure 1: Intersection of Mill street and Third street in Guerneville, California after an AR event.
Source: Brice-Saddler (2019).

This thesis aims to investigate the thermodynamic structure of an AR during the North
Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) campaign (Schäfler
et al. 2018). The High Altitude and Long Range Research Aircraft (HALO) from the
German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt) provides an
excellent opportunity to scan the AR using not only dropsondes, but also a multi-channel
Microwave Radiometer (MWR), a cloud radar and a lidar. A great advantage of microwave
compared to infrared or visible light observations is that they can observe the atmosphere
within and below clouds while infrared and visible light observations are limited to the
cloud top (Janssen 1993, pp. 260-270). Compared to polar orbiting satellites, a research
aircraft allows a more flexible flight path and measurements with a higher resolution
because the observation height is considerably lower. Regression and Optimal Estimation
algorithms will be developed and used to retrieve temperature and humidity profiles from
microwave observations.
The following questions will be answered during the thesis: How well do the retrievals

perform compared to interpolated dropsondes and NWP model simulations? How good
are AR features resolved? What is the gain of information and what are the limits
when using microwave observations to examine the AR structure? These questions may
help to assess the possibility of microwave measurements to identify strong poleward
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moisture fluxes and their impact on Arctic Amplification in future campaigns. Further-
more, the capability of satellite-based microwave sounders, such as the Advanced Micro-
wave Sounding Unit (AMSU), to resolve the AR structure, can be assessed.
At first, background information about thermodynamics will be given in chapter 2,

followed by the current knowledge about ARs. Subsequently, the theory of microwave
radiative transfer and the retrievals will be described. In chapter 3, a brief overview
of the HALO flight which encountered an AR and the used data sets will be given.
This includes the presentation of relevant instruments onboard HALO. Afterwards, the
retrieval development is presented. The retrieval performance will be analysed in chapter
4. Additionally, the AR structure and the benefit of microwave observations will be
investigated. In chapter 5 the results will be discussed and concluded before giving an
outlook on future work with microwave observations regarding ARs.
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2 Theoretical background

In the first part of this chapter, a brief overview of the relevant thermodynamics ad-
dressed in this thesis is given (2.1). The current knowledge about ARs, focussing on
their characteristics, is summarised in subsection 2.2. Afterwards, to understand the pro-
cesses behind microwave observations, the radiative transfer in the microwave spectrum
is explained (2.3). The methods to retrieve temperature (T ) and absolute humidity (ρv)
profiles are presented at the end of this chapter (2.4).

2.1 Thermodynamics

The atmospheric gases may approximately be considered ideal, implying that their inter-
nal energy, which is basically the Brownian motion of the molecules, depends exclusively
on the temperature (American Meteorological Society 2012b; Demtröder 2018, p. 205).
Collisions, characterizing the only interactions between molecules, are considered to be
perfectly elastic and therefore conserve momentum and energy of the motion (Demtröder
2018, p. 192). The radius of the molecule itself may be neglected compared to the dis-
tance between molecules in an ideal gas (Demtröder 2018, p. 192). The state of a dry
atmosphere may then be expressed by the ideal gas law

p = ρdRdT, (1)

depending only on the pressure p, dry air density ρd and temperature T of the gas (Holton
2004, p. 19). Rd ≈ 287 J kg−1 K−1 denotes the gas constant for dry air.
The first law of thermodynamics states that the internal energy U of a system is in-

creased by the addition of heat Q or by work done on the system W (Demtröder 2018,
pp. 293-295):

dU = dQ+ dW (2)

Since work done by the system changes the volume V of the gas, acting against the
pressure, this term may be rewritten as dW = −p dV . The mass independent formulation
of Eq. (2) may be obtained through division by mass du = dq−p dα, where α = ρ−1 is the
specific volume. In an adiabatic process, which frequently occurs in the atmosphere, e.g.
during air parcel motion, no heat is exchanged between the system and its surroundings
so that the change of internal energy exclusively depends on the volume expansion or
contraction (Demtröder 2018, pp. 293-296). Using du = cv dT , where cv is the specific
heat at constant volume, yields

cv dT = −p dα. (3)

Applying the quotient rule of differentiation on the ideal gas law dα = d(RdT/p) =
R · (p dT − T dp)/p2 and noting cv + Rd = cp as the specific heat at constant pressure,
leads to

cp dT −RdT
dp
p

= 0. (4)

Variable separation allows independent integration of cp dT/T = R dp/p by pressure and
temperature from a reference point with subscript 0 to an arbitrary value. It yields the
definition of potential temperature θ, a measure of the temperature an air parcel would

10



have if it was adiabatically brought to the reference pressure (e.g. by compression or
descent in the atmosphere) p0 (Holton 2004, pp. 46-51):

θ = T

(
p0

p

)Rd/cp

(5)

If moisture, which can be quantified in multiple ways, is no longer neglected, a moving
parcel may experience condensation and evaporation during motion. Following Holton
(2004, pp. 290-291), the relative humidity of an air parcel will increase during ascent
because its temperature will decrease, bringing the parcel closer to saturation with respect
to water vapour. Once saturation is reached, condensational (or latent) heat is released
(Lc = 2.501 · 106 J kg−1 American Meteorological Society 2012c), partly counteracting the
cooling due to the ascent. The Equivalent Potential Temperature (EPT) θe is used to
specify the temperature a parcel would have if it first ascended and expanded until all
water vapour has been condensed and was subsequently brought to the reference pressure.
For an air parcel, the moisture content may be expressed by the mixing ratio

w = ρv
ρd

ideal gas law︷︸︸︷= ρvRdT

p− e
, (6)

where ρv is the absolute humidity, Rv the gas constant of water vapour and e = ρvRvT
the water vapour pressure. Following Trapp (2013, pp. 18-21), EPT can be approximated
by

θe = θ · RH−Rvw/cp exp
(
Lcw

cpT

)
, (7)

with the relative humidity RH = e/es. The Clausius-Clapeyron equation is used to com-
pute the saturation water vapour pressure es = 611.2 Pa exp(17.67T◦C/ (T◦C + 243.5 K))
at a certain temperature T◦C (in ◦C) (American Meteorological Society 2012a).
The motion of an air parcel is strongly influenced by the static stability of the atmo-

sphere, where the moisture needs to be respected as well (Trapp 2013, pp. 121-126).
Static stability depends on the difference between the vertical temperature gradient for
adiabatic or pseudo-adiabatic processes (dry and moist lapse rate Γd or Γe) and the cur-
rent lapse rate γ. In a stable atmosphere, a parcel, which may have been deviated about
its initial altitude when approaching a mountain, returns to its original height and even-
tually starts oscillating about it (Trapp 2013, pp. 123-126). In neutral conditions, the
initial disturbance remains unchanged. Unstable conditions, when an initial perturbation
continues to be intensified, only persist for a short period of time because the induced
motion tends to equalise the atmosphere to reach a stable stratification. Static stability
is usually grouped into five categories (Trapp 2013, pp. 124-125):

• γ < Γe: absolutely stable

• γ = Γe: moist neutral

• Γe < γ < Γd: stable with respect to dry conditions

• γ = Γd: dry neutral

• γ > Γd: absolutely unstable
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The cloud that may have been formed by many ascending parcels, contains a certain
amount of water per unit volume, usually expressed as Liquid Water Content (LWC, in
kg m−3). Integration over the whole cloud layer defines the Liquid Water Path (LWP)
(American Meteorological Society 2012d, Löhnert et al. 2001)

LWP =
∫ ztop

zbottom
LWC dz, (8)

where zbottom and ztop mark the cloud boundaries.

2.2 Characteristics of Atmospheric Rivers

Newell et al. (1992) were the first to discover strong filamentary moisture fluxes in the mid-
latitudes and subtropics. As the intensity of water vapour transport was comparable to the
Amazon River (1.65 · 108 kg s−1), they were named Tropospheric, and later, Atmospheric
Rivers (ARs). In the subsequent years it was found, that ARs transport, on average,
twice as much water as the Amazon River (American Meteorological Society 2019).
ARs have been investigated for more than two decades before a formal definition was

released in 2017. The American Meteorological Society (2019) has agreed to define an AR
as a long and narrow band of strong horizontal moisture transport that typically features
a Low Level Jet (LLJ) ahead of the cold front of an extratropical cyclone. There are
usually 4–5 of them in each hemisphere at all times, closely related to planetary waves.
Although covering merely 10% of the longitudinal length at a given latitude, ARs cause
almost the entire poleward moisture flux (Newell et al. 1992, Zhu and Newell 1998). They
occur mostly in the mid-latitude oceans and last several days while propagating eastwards
with the mean zonal wind (Guan and Waliser 2015, Gao et al. 2016). Nash et al. (2018)
described pathways in the Atlantic and Pacific Ocean where ARs tend to occur most
frequently. Usually, due to enhanced cyclone activity, more and stronger ARs are found
in the winter hemisphere (Guan and Waliser 2015, 2017). A greater seasonal variation
can be seen in the northern hemisphere because of the significant temperature contrast
between summer and winter.
ARs are identified by relative or absolute thresholds of Integrated Water Vapour (IWV)

or Integrated Water Vapour Transport (IVT). IWV is defined as the vertical integral of
absolute humidity ρv while IVT respects the actual moisture transport with the wind
vector v:

IWV =
∫ ztop

z0
ρv dz (9)

IVT =
∫ ztop

z0
ρv · v dz (10)

The lower boundary z0 is usually set as the surface while the top varies between studies.
A common upper limit ztop is 9 km (or 300 hPa) because above this level radiosonde
humidity measurements become inaccurate and the moisture content is negligible Zhu and
Newell (1998). Many studies use absolute thresholds — 20mm for IWV and 250 kg m−1 s−1

for IVT — as part of their AR identification method (e.g. Ralph et al. 2004, Neiman
et al. 2008, Ralph et al. 2017b). Typical maximum IVT values range from 650 to more
than 1200 kg m−1 s−1 in extreme cases. Other studies, e.g. Guan and Waliser (2015),
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use the 85th percentile of IVT and therefore a relative threshold which accounts for the
reduction of IVT over continents and in higher latitudes. According to Rutz et al. (2019),
this method detects weaker ARs compared to common absolute or more limiting relative
thresholds. AR identification is furthermore restricted by geometric requirements. The
filamentary structure is represented by the length to width ratio, which typically lies above
2 and can reach values greater than 5 (Newell et al. 1992). The length of ARs commonly
exceeds 2000 km, in some cases even 5000 km, with an average width of about 850 km
(Guan and Waliser 2015, American Meteorological Society 2019). In the subtropics, ARs
have been observed to be generally wider than average, featuring higher IWV, albeit lower
wind speeds (Guan et al. 2017, Ralph et al. 2017b). The opposite case applies for mid-
latitudes, where the moisture content is reduced because the air can take up less water
vapour from ocean evaporation at colder temperatures and the wind speed is greater due
to higher baroclinicity. Therefore, the IVT is roughly equal in both regions.
Evaporation over oceans is the major source of moisture for the formation of ARs

(Zhu and Newell 1994). Trajectory analysis performed by Bao et al. (2006) showed that
evaporated moisture is converged into a long and narrow band. ARs rather represent
snapshots of the current streamlines and not trajectories of air parcels that would indicate
a direct transport of moisture from the tropics to the mid-latitudes. In general, the
latter process may occur but it is uncommon. Sodemann and Stohl (2013) found that
precipitating air parcels in Norway originate mostly from local evaporation. However,
during AR events the contribution of remote parcels — originating from 10–50◦N —
can be increased by a factor of 10–20 compared to normal conditions. As shown in
Fig. 2, Rossby waves, that propagate through the atmoshpere over the ocean, tap the
(sub-)tropical moisture reservoir and pull water vapour into a confluence zone ahead of
the trough between an extratropical cyclone and a subtropical high. As a result, the
confluence forms the typical filamentary structure of an AR (Bao et al. 2006). This also
explains the close relationship between ARs and planetary waves. In the Pacific ocean,
Kelvin waves (also shown in Fig. 2) may be responsible for anomalous high IWV values
due to increased convection, potentially leading to stronger ARs (Ralph et al. 2011).
Convergence along the cold front of an extratropical cyclone maintains the concentrated

moisture band (Dacre et al. 2015, Komatsu et al. 2018). Therefore, it is not surprising
that ARs are often located within the Warm Conveyor Belt (WCB), coincident with the
LLJ ahead of the cold front of a cyclone (see Fig. 3 (a)) (Ralph et al. 2004). The LLJ is
formed by temperature contrasts across the cold front (Gimeno et al. 2014). Lifting pro-
cesses, caused by air density differences between the warm and moist air inside the WCB
and the airmass behind the cold front, transport moisture of ARs to higher altitudes (Bao
et al. 2006, Sodemann and Stohl 2013). This leads to the liberation of condensational
heat and therefore to an acceleration of the ascent (Komatsu et al. 2018). Following the
conservation of potential vorticity, the stretched air column enhances its vorticity, result-
ing in greater wind speeds and an intensification of the cyclone (Zhu and Newell 1994,
Sodemann and Stohl 2013). Hence, many ARs contribute to cyclogenesis while being
maintained through convergence within the cyclones. The amount of precipitation, which
results from condensation, strongly depends on the IWV. Ralph et al. (2004) detected a
nonlinear rain rate enhancement for different IWV; e.g. a rain rate of 1.5 mm h−1 corre-
sponds to IWV = 2 cm, while a doubled IWV caused a rain rate greater than 7 mm h−1.
The typical precipitation field of an AR lies along the cold front and may extend to the
landfall position, as it can be seen in Fig. 3 (a).
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Figure 2: An Extratropical Wave Package (EWP, grey shaded arrow) propagates through the Pacific
ocean (propagation shown as purple arrow) and taps the tropical IWV reservoir (green shading and
green arrows). The frontal confluence (black arrows) between a subtropical high and an extratropical
cyclone (fronts marked in black) forms an AR (green shading). Tropical Kelvin waves (K2 and K3) cause
convection anomalies. Source: Ralph et al. (2011).

Figure 3: (a): Landfalling AR (big arrow) with IWV ≥ 2 cm (green shading) at the West Coast of the
United States with a corresponding extratropical cyclone indicated as L (light blue). The AR-related
rain rate (RR) enhancement is shown in red and the tropical IWV reservoir (≥ 3 cm) in light green
shading. The blue dashed line marks the precipitation field and extreme precipitation is outlined by
another contour. The LLJ is indicated by a dark blue arrow. A–B is the cross section that is shown
in (b). (b): Vertical cross section of the AR, where the polar cold front is displayed as a black line,
the horizontal wind speed (in m s−1) as blue contours, the specific humidity (in g kg−1) as green dotted
contours and the along-front moisture transport (in kg s−1) as red contours and shading. The position of
the LLJ is indicated by an extra label. Source: Gimeno et al. (2014).
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To understand the formation of extreme precipitation at the landfall position, which
is marked as Extreme Precipitation in Fig. 3 (a), a closer look at the vertical structure
of the AR is required. As depicted in Fig. 3 (b), the AR is located to the south of
the polar cold front where the LLJ coincides with high specific humidity, forming the
region of maximum moisture transport. Although the wind speed is greater within the
mid-latitude jet in higher altitudes (8–10 km), 75% of the moisture flux is confined to
the lowest 2.5–3 km because the majority of moisture is found in the lower troposphere
(Ralph et al. 2005, Neiman et al. 2008, Ralph et al. 2017b). It is remarkable that the
specific humidity in 10 km altitude within the AR is as high as in 2 km altitude behind
the cold front. The equatorward increase of background moisture is indicated by the
altitude difference of e.g. the 1 g kg−1 isoline of specific humidity at both ends of the AR
(± 600 km off the AR centre in Fig. 3 (b)).
In the following, the orographic precipitation enhancement of ARs, investigated by

Ralph et al. (2005) and Neiman et al. (2008), is presented. Large scale ascent along the
cold front nearly saturates the airmass of the AR. Therefore, moist neutral static stability
has been established in the lowest 3 km, where the profile is almost moist adiabatic (see
Fig. 4). Hence, moist neutral conditions are superposed with the LLJ, which is indicated
by the wind speed maximum in 1 km altitude in Fig. 4. As a result, the strong mois-
ture transport will be lifted with little or no resistance when hitting a mountain chain
because of the moist neutral static stability. Less than 400m of lift is required for the air
column below 3 km to reach saturation. The lift provided along the North American West
Coast is sufficient to saturate the airmass because a large fraction of the mountain chain
is higher than 500m, in some regions even higher than 1000m. Hence, clouds can be
formed with ease. Perpendicular orientation of the moisture flux to the mountain chain
potentially maximises the orographic precipitation. Although the neutral moist static
stability suggests that no blocking should occur at the luv side of the mountains, it is
often observed. Ralph et al. (2005) concluded that other yet to be examined processes
must be responsible for the blocking.

2.3 Microwave Radiative Transfer

The emission and interaction of electromagnetic radiation with surfaces and the atmo-
sphere are widely used for remote sensing in meteorological applications. Electromagnetic
radiation, which propagates as a wave at the speed of light (c ≈ 2.998 · 108 m s−1) (Liou
2002, pp. 1-2), is generally described by its wavelength λ or frequency ν that are related
to the speed of light via c = λν. The most interesting spectral regions for meteorology
range from ultraviolet (100 ≤ λ ≤ 400 nm) over visible light (400 ≤ λ ≤ 700 nm) and
infrared (0.7 ≤ λ ≤ 1000µm) to mircowaves (1 ≤ λ ≤ 100 mm) (Liou 2002, pp. 1-3;
Demtröder 2017, pp. 204-206). A great advantage of the microwave spectrum is that it
can be used in nearly all weather conditions because clouds are semi-transparent, allowing
observations even beyond cloud boundaries. Remote sensing in the infrared and visible
light is limited to surface observations and profiling along absorption bands in clear sky
situations (Janssen 1993, pp. 260-270). This subsection focusses on the emission and in-
teraction of microwave radiation (3–300GHz in terms of frequency) with the atmosphere,
which is often used to derive meteorological parameters. Therefore, the radiative transfer
will be described following Janssen (1993) and Liou (2002).
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Figure 4: Schematic representation of orographic precipitation enhancement (denser rain streaks re-
present stronger precipitation) when an AR hits a coastal mountain chain. The warm and moist airmass
within the LLJ (large arrow) is transported from the ocean towards the coast. Qualitative profiles of
along-river flux, moist stability and wind speed show integrated values along A–A’. Source: Ralph et al.
(2005).

2.3.1 Emission

According to Planck’s Law, spectral radiance, which is defined as the radiant energy flux
per time, per unit area, per unit-frequency and per unit solid angle, is emitted by each
black body in local thermodynamic equilibrium with the temperature T following

Bν(T ) = 2hν3

c2
1

ehν/kBT − 1 . (11)

Planck’s and Boltzmann’s constant are denoted as h and kB, respectively. For simplicity,
the term spectral radiance will, from now on, be substituted by radiance or radiation
intensity. Emission occurs when electromagnetic oscillators with energy E = (n+ 1/2)hν
in atoms change from a higher to a lower energy state ∆E = ∆nhν, where n is the
quantum number and ∆n its change during emission. A black body is a perfect emitter
and therefore, according to Kirchhoff’s Law, a perfect absorber at the same frequency with
an emissivity εν and absorptivity αν of 1. As ideal black bodies do not exist, the grey
body with εν = αν < 1 was introduced. In the microwave spectrum, the emissivity of the
ocean is about 0.5–0.6 while over land it is mostly greater than 0.7 and varies significantly
(Janssen 1993, Weng et al. 2001). Therefore, temperature and humidity profiles derived
with microwave remote sensing are usually confined to oceanic regions due to problems
regarding over-exposure of the lower troposphere and emissivity variations (Aires et al.
2001).

2.3.2 Absorption

The absorption by atmospheric constituents and hydrometeors can be exploited to extract
information about their properties. It describes the interaction of radiation with molecules
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or atoms at certain frequencies. As mentioned in section 2.3.1 radiation of the frequency
ν = (Ea − Eb)/h can only be emitted when the particle changes its energy state from a
to b with Ea > Eb. The higher (lower) energy state is also referred to as excited (ground)
state. Absorption requires incident radiation that forces the absorbing particle from a
lower to a higher energy state. Hence, only radiation with a suitable frequency can be
absorbed when hitting a molecule or an atom. Since the particle is in its excited state
after absorption, radiation will be reemitted subsequently when it returns to its ground
state.
There are three types of transitions that cause absorption when certain quantised energy

states are met: Electronic transitions, where electrons are brought to higher shells of
the atom, require high-energy radiation and therefore occur in the ultraviolet or visible
spectrum. The second type, which is typical for infrared radiation, is the vibrational
transition, where the atom distance in the molecule varies symmetrically or asymetrically.
Rotational transitions are responsible for absorption in the microwave regime (and also
in the far infrared), representing the third type of transitions. This type will be explained
in greater detail:
The molecules or atoms require an electric or magnetic dipole so that their rotational

(and vibrational) energy states can be changed by an incident electromagnetic wave.
An electric dipole exists when the average position of positive and negative charges are
spatially separated from each other. As all particles, molecules can move in space and
rotate about an axis through their centre of mass. They have a certain mass and spatial
extent and therefore an inertia Ii (with i indicating one of the three rotational axes). The
inertia is related to the angular momentum L by the product with the angular velocity
of the rotating mass ω. For a spherical top, the inertia is equal along all three axes. The
angular momentum of the spinning molecule is given by

L = h

2π
√
J (J + 1), (12)

where J ∈ N∪ {0} is the rotational quantum number. Inserting Eq. (12) into the energy
of a rigid rotating dipole with a spherical top (E = Lω/2), the energy of state J is

EJ = hω

4π
√
J (J + 1) (13a)

with ω = L

Ii
= h

2πIi

√
J (J + 1) and therefore (13b)

⇔ EJ = BhJ (J + 1). (13c)

B = h/(8π2Ii) denotes the rotational constant. The energy can only change from one
to the next higher or lower state so that ∆J = ±1. In this case, the frequency of an
absorption line, when energy changes from J to J + 1, is then given by

ν = EJ+1 − EJ
h

= Bh (J + 1) (J + 1 + 1)−BhJ (J + 1)
h

= 2B (J + 1), (14)

which marks the resonant absorption lines. Remote sensing applications in the micro-
wave spectrum focus on the absorption caused by water vapour H2O and oxygen O2.
While oxygen is a linear molecule, having the same inertia for two axes and a negligible
third one, water vapour is asymmetric with different values for each axis. Hence, water
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vapour, combined with vibrational transitions, yields numerous resonant absorption lines
in the microwave and infrared spectrum but only the pure rotational lines at 22.235 and
183.310GHz are of interest. Besides the resonant absorption lines, water vapour also
features a continuum absorption which is non resonant and whose origin has not yet been
fully understood (Janssen 1993, pp. 68-72). It may be caused by water dimers, a formation
of two bonded water molecules, leading to more complex energy levels. Furthermore,
interactions between water and nitrogen or oxygen — the two most abundant molecules
in the troposphere — may contribute to the continuum absorption in the microwave and
far infrared spectrum (Liou 2002, pp. 118-119). In this spectral region, the continuum
absorption strength increases with the frequency squared. The relevant oxygen absorption
lines, whose frequencies can roughly be cal-culated with Eq. (14), lie at around 60 and
118.75GHz. While the 118.75GHz line is caused by a single transition, the absorption
band at 60GHz consists of numerous single lines that are smoothed out due to line
broadening, which will be explained in the following paragraph.
The computation of the strength of all resonant absorption lines of a specific molecule at

a given frequency ν requires knowledge of the strength Sjk (in m2 kg−1 s−1) of absorption
lines and the line-shape function F (ν, νjk) (in s) for energy states j and k:

ka(ν) =
∑
j

∑
k

Sjk(T (z))F (ν, νjk) (15)

The mass specific absorption coefficient is denoted as ka(ν) (in m2 kg−1). The latter
may be converted to the volume absorption coefficient via multiplication with the density
ρ of the absorbing medium βa(ν) = ρka(ν) (in m−1). The line-strength function Sjk
represents the intensity of single absorption lines at the frequency νjk and depends on the
temperature, which, in turn, depends on the altitude z. As the name suggests, the line-
shape function is defined by the shape and location of the absorption lines. It describes
the line broadening due to Doppler and pressure effects. According to the Maxwell-
Boltzmann distribution, each molecule with a temperature moves through space in a
random direction with a velocity v, some of them towards (v > 0) and others against
(v < 0) the propagation of electromagnetic radiation. This leads to a Doppler shift of
the frequency ν ′ = ν (1 + v/c) with respect to the original frequency without motion ν.
Pressure broadening is caused by collisions of molecules, disrupting the phase coherence
of the emitted radiation, leading to a shift of frequency. The Lorentz profile (Eq. (16b))
is used to describe the broadening effect by pressure p and the Doppler line shape is given
by Eq. (16a):

Doppler : F (ν, νjk) = 1
βD
√
π

exp
−(ν − νjk

βD

)2
 (16a)

Pressure : F (ν, νjk) = βL
π ((ν − νjk)2 + β2

L) (16b)

The coefficients βD ·
√

ln 2 and βL denote the half-width of the line at the half-maximum in
units of frequency. According to the kinetic theory of gases, the half-width of a pressure
broadened line depends on pressure and temperature βL = βL0 (p/p0) (T0/T )n, where
βL0 is a reference line width at a standardised pressure p0 = 1013 hPa and temperature
T0 = 273K. The parameter n varies between 0.5 and 1, depending on the type of molecule.
In the troposphere line broadening is dominated by the pressure effect.
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Hydrometeors, such as cloud droplets, rain, ice particles or snow, also interact with ra-
diation, causing scattering (section 2.3.3) and absorption effects, which allow the retrieval
of hydrometeor properties. Generally, since local thermodynamic equilibrium between
hydrometeors and the surrounding atmosphere is established, those who absorb also emit
in the microwave spectrum (e.g. cloud droplets). The absorption strength of liquid clouds
is proportional to the hydrometeor density. In contrast to resonant water vapour absorp-
tion, emission by hydrometeors is well visible in window regions away from absorption
lines (e.g. 37 or 90GHz). At higher frequencies the absorption by liquid hydrometeors
is increased, possibly saturating the absorption effect in case of a high hydrometeor load.
Consequently, the atmosphere behind such a cloud can no longer be observed. Liquid
hydrometeors with a radius of some millimeters and frozen hydrometeors are responsible
for scattering of radiation at higher frequencies (> 100GHz), which will be explained in
the following subsection.

2.3.3 Scattering

In the atmosphere, radiation usually does not propagate from its source to the observer
without interacting with particles. These can not only absorb but also redirect radia-
tion to all directions, which is called scattering. Both scattering and absorption cause
attenuation, referred to as extinction, by removing energy from the incident radiation.
If radiation is scattered into the direction of observation, it acts as a source. The size
parameter is defined as x = 2πa/λ for spherical particles, where a is the particle radius
and λ the wavelength of the radiation. This quantity generally characterises the kind of
scattering:

• x� 1: Rayleigh scattering

• x & 1: Mie scattering

• x≫ 1: Geometric optics

Scattering is furthermore affected by the shape and orientation of a particle. In the
microwave spectrum, only Rayleigh and Mie scattering are considered. In clear sky or low
hydrometeor load situations, scattering is often neglected for frequencies below 30GHz.
In the Rayleigh scattering regime, the radius of a homogeneous, isotropic and spherical

particle is much smaller than the wavelength of the incident radiation. Therefore, on
impact with the particle, the electromagnetic radiation is able to induce a homogeneous
electric field E0, which is similar in every part of the particle. This causes all molecular
dipoles in the particle, which may have their own electric field, to be realigned in the
same manner due to a dipole moment p0 = αpE0, where αp denotes the polarisability of
the particle. The resulting scattered electric field is a combination of the induced and the
particle’s own. Oscillation of the electric dipoles inside the particle, caused by the induced
electric field, generates electromagnetic waves. This represents the scattered radiation.
At a distance r, the scattered electric field, depending on the acceleration of the scattered
dipole moment p, is given by

E = 1
c2r

∂2p
∂t2

sin γ. (17)
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The angle between the scattered dipole moment and the direction of observation is ex-
pressed by γ. Inserting p = p0 exp (−ik (r − ct)), which highlights the dependency of the
scattered on the induced dipole moment (p0 = αpE0), into Eq. (17) yields

E = −k
2

r
αpE0e

−ik (r−ct) sin γ, (18)

with k = ω/c denoting the wavenumber and ω = 2πν the circular frequency of the
oscillating dipole. To estimate the radiation intensity, it is convenient to split the scattered
electric field into a component parallel to a reference plane E‖ and perpendicular to it
E⊥. The reference is defined to be the plane of the incident and scattered radiation. γ
is then split into γ⊥ = π/2 and γ‖ = π/2 − Θ with Θ as the angle between the incident
and scattered radiation. Using sin γ⊥ = 1 and sin γ‖ = cos Θ, the scattered electric field
is written as

E⊥ = −k
2

r
αpE0⊥e

−ik (r−ct) and (19a)

E‖ = −k
2

r
αpE0‖e

−ik (r−ct) cos Θ. (19b)

The intensity is proportional to the squared absolute value of the electric field I ∝ |E|2,
neglecting a proportionality factor for simplicity. Therefore, Eq. (19a) and (19b) can be
rewritten in terms of intensity and summarised as

I = I⊥ + I‖ = k4

r2α
2
p

(
I0⊥ + I0‖ cos2 Θ

)
. (20)

In case of unpolarised incident radiation the intensity I0 is equally distributed on the
vertical and parallel component. Hence, inserting I0⊥ = I0‖ = I0/2 and k = 2πν/c into
Eq. (20) finally yields

I =
(2π

c

)4 ν4

r2α
2
p

I0

2
(
1 + cos2 Θ

)
. (21)

The most common example of Rayleigh scattering is the blue color of the sky, which
can be explained by Eq. (21). The scattered radiation intensity is proportional to the
fourth power of frequency of the incident radiation, resulting in stronger scattering of
blue compared to green or red light on air molecules. In case of vertically polarised light
(I0‖ = 0), the scattered radiation intensity does not depend on the scattering angle and
is therefore isotropic. Horizontally polarised light (I0⊥ = 0) causes a dependency on
cos2 Θ only, which means that the intensity can be 0 for Θ = 90 or 270◦. To describe
the relation between scattering intensity and scattering angle in more complex cases,
including non-spherical particles and multiple scattering, a phase function P (cos Θ) is
defined. It complies normation when integrated over a unit sphere, where Φ marks the
azimuth angles ∫ 2π

0

∫ π

0

P (cos Θ)
4π sin Θ dΘ dΦ = 1. (22)

When larger particles (e.g. rain drops or snow) are considered, Mie theory is applied. As
the derivation of Mie scattering is lengthy, only the basic ideas will be presented. At first,
the Maxwell equations, which describe the behaviour of electric and magnetic fields, are
solved in spherical coordinates using Legendre polynomials. The resulting function is then
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used to obtain a solution of an electromagnetic wave scattered by a homogeneous sphere.
Additionally, it is assumed that the scattered radiation is observed at large distances. Split
into parallel and perpendicular components, the scattered radiation intensity is given by

Is⊥ = I i⊥
|S1(Θ)|2
k2r2 and (23a)

Is‖ = I i‖
|S2(Θ)|2
k2r2 . (23b)

The wavenumber is still denoted as k = 2πν/c and r is the distance between the scattering
particle and the observer. The superscript i indicates incident and s scattered radiation.
S1 and S2 represent intensity functions for the respective components and are defined as

S1(Θ) =
∞∑
n=1

2n+ 1
n (n+ 1)

(
an
P l
n(cos Θ)
sin Θ + bn

dP l
n(cos Θ)
dΘ

)
and (24a)

S2(Θ) =
∞∑
n=1

2n+ 1
n (n+ 1)

(
bn
P l
n(cos Θ)
sin Θ + an

dP l
n(cos Θ)
dΘ

)
, (24b)

with the Mie scattering coefficients an and bn and Legendre polynomials P l
n. The Mie

coefficients depend on the electromagnetic wave function, size parameter and refractive
index, which can be split into its real and imaginary part. The ratio of radiation phase
velocity in vaccum to that inside a medium marks the real part, while the imaginary part
represents the extinction caused by propagation through the medium.

2.3.4 Radiative Transfer Equation

Since emission, as well as the interaction of radiation with matter, has been presented,
it can now be composed into the Radiative Transfer Equation (RTE). This will help
to get an idea what microwave observations measure when radiation travels through an
absorbing and scattering atmosphere. At first, a simplified version of the RTE without
scattering will be formulated for a satellite- or aircraft-based instrument, an approach
which is approximately valid for clear sky situations and low frequencies in the microwave
spectrum. In the considered frequency interval (20 < ν < 200GHz) absorption by water
vapour and oxygen dominates extinction in the absence of hydrometeors. The radiance
Iν — with the frequency dependence explicitly noted as this may not be obvious in the
subsequent equations — is changed by sources and sinks along an infinitesimal path ds
through the atmosphere

dIν
ds = Sources− Sinks. (25)

As scattering is neglected, the sink is solely caused by absorption βaIν , where βa is the
volume absorption coefficient (in m−1). Emission by atmospheric constituents at tem-
perature T acts as a source term following Planck’s and Kirchhoff’s law (section 2.3.1)
βaBν(T ). Inserted into Eq. (25), this yields a general form of the RTE:

dIν
ds = βa (Bν(T )− Iν). (26)

Beer-Bouguer-Lambert’s law describes the change of intensity by attenuation (here only
absorption) dIν/ds = −βaIν . Separation of variables is applied to obtain the solution

Iν(s) = I0νe
−τ(s), (27)
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where I0ν is the radiance before propagating through the absorbing medium and τ(s) =∫ s
0 βa(s′) ds′ is the optical depth. The relation dτ = −βads (with a conventional negative
sign) is used to rewrite the differential in Eq. (26). Further reorganisation of Eq. (26)
and multiplication by the exponential factor from Beer-Bouguer-Lambert’s law leads to(

d
dτ Iν

)
e−τ − Iνe−τ = −Bν(T )e−τ ⇔ d

dτ
(
Iνe
−τ
)

= −Bν(T )e−τ . (28)

Integrating the optical depth from τ(0) = 0 to τ(s0) yields the solution of the RTE:

Iν(0) = Iν(τ(s0))e−τ(s0) +
∫ τ(s0)

0
Bν(T )e−τ(s) dτ

⇔ Iν(0) = Iν(s0)e−
∫ s0

0 βa(s′) ds′ +
∫ s0

0
Bν(T )e−

∫ s

0 βa(s′) ds′βa(s) ds (29)

Hence, the radiance, that arrives at the sensor (s = 0, left hand side of Eq. (29)), is
composed of the attenuated radiance at distance s0 and the emission by atmospheric
constituents at temperature T over the entire path. Because in the microwave spectrum
hν � kBT is fulfilled for low frequencies when tropospheric temperatures are considered,
the Rayleigh-Jeans approximation can be applied to further simplify the solution of the
RTE. A Taylor expansion of the exponential term of the Planck function Eq. (11) around
hν/kBT ≈ 0 is performed, yielding

Bν(T ) = 2ν2

c2 kBT. (30)

Therefore, the emitted radiance is linearly related to the physical temperature of the
emitting particle. Likewise, this idea can be transferred to the measured and attenuated
radiance

Tb(ν) ≡ c2

2kBν2 Iν , (31)

where Tb is defined as the brightness temperature, henceforth abbreviated as TB. A black
body with a physical temperature of TB would emit the same radiation as the one received
as TB by the sensor. The solution of the RTE can be written in terms of TBs and the
physical temperature of emitting particles, leading to

Tb(ν) = Tb0e
−
∫ s0

0 βa(s′) ds′ +
∫ s0

0
T (s)e−

∫ s

0 βa(s′) ds′βa(s) ds, (32)

with Tb0 referring to the background radiation Iν(s0). If scattering was included, another
term containing the integral of the radiance multiplied by the phase function over a unit
sphere and over ds would be added to Eq. (26). In the following, the RTE solution Eq.
(32) will be adapted to fit the observation geometry of satellites and aircrafts. Distance
s from the sensor will be replaced by altitude above sea level z. Geometrically, the
relationship between the two can be expressed as ds = −dz/ cos θ = sec θdz with zenith
angle θ. A negative sign has been chosen because as the altitude increases the distance
to the sensor decreases. The sensor is located at s = 0, which corresponds to the altitude
z = H. Therefore, the optical depth can be written in terms of altitude

τ(z) = − sec θ
∫ z

H
βa(z′) dz′ = sec θ

∫ H

z
βa(z′) dz′. (33)
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Under the assumption of a horizontal stratified atmosphere, Eq. (32) can be updated to

Tb(ν, θ) = Tb0e
− sec θ

∫ H

0 βa(z′) dz′ + sec θ
∫ H

0
T (z)e− sec θ

∫ H

z
βa(z′) dz′βa(z) dz, (34)

where the latter term represents the upwelling emitted radiation from atmospheric con-
stituents (see Tu in Fig. 5). The surface term Tb0 consists of emitted radiation from the
surface Te and downwelling radiation reflected at the surface Tr. For a smooth and homo-
geneous surface with an emissivity εs and temperature Ts the emitted radiation from the
surface equals εs(ν, θ)Ts (see Fig. 5). Cosmic background radiation (with a temperature
Tc ≈ 2.7 K) and emission from the atmosphere contribute to the downwelling radiation

Td(ν, θ) = Tce
− sec θτ(0) + sec θ

∫ 0

H
T (z)e− sec θ (τ(0)−τ(z))βa(z) dz. (35)

Generally, the cosmic background radiation is negligible compared to the atmospheric
emission and will therefore be omitted. Using Tr = (1 − εs(ν, θ))Td(ν, θ) and converting
to pressure coordinates following the hydrostatic relationship dp = −ρgdz, where g is the
gravitational acceleration on Earth and ρ the air density, Eq. (34) can be rewritten as

Tb(ν, θ) = εs(ν, θ)Tstν(θ, ps, 0) + sec θ
∫ 0

ps

T (p) ∂tν(θ, p, 0)
∂p

dp

+ (1− εs(ν, θ))tν(θ, ps, 0)
∫ ps

0
T (p) ∂tν(θ, ps, p)

∂p
dp. (36)

The transmissivity tν is a measure of the fraction of radiance that arrives at the sensor
compared to the unattenuated radiance and is defined as

tν(θ, ps, p) = exp
(
−sec θ

g

∫ ps

p

βa(p′)
ρ(p′) dp′

)
. (37)

Figure 5: Brightness temperature Tb measured at the sensor consists of upwelling Tu, and downwelling Td
radiation observed under zenith angle θ. The downwelling radiation is reflected at the surface (1−εs)Td,
which has a certain temperature Ts and emissivity εs and therefore emits with εsTS . The radiation is
attenuated by the factor exp(−τ sec θ). Source: Janssen (1993).
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Equation (36) roughly equals the signal measured by a MWR before being amplified and
post-processed. The signal processing will not be elaborated here. The change of trans-
missivity between two heights or pressure levels is called weighting function and indicates
the amount of radiation being absorbed in that layer. In case the transmissivity does not
vary with altitude, there is no interaction between the atmosphere and radiation. The
weighting function is therefore a measure of signal strength of that layer because informa-
tion can only be extracted from the atmosphere if the transmissivity changes. In window
regions with clear sky situations, where the total transmittance of radiance through the
entire atmosphere is nearly 100 %, surface properties can be measured (e.g. 37 or 90GHz,
see Fig. 6). The transmittance is considerably reduced close to resonant absorption lines
of water vapour (22.235 and 183.310GHz) and oxygen (60 and 118.75GHz). Except for
the low frequency water vapour absorption line, the atmosphere is optically thick, dis-
abling radiation from the surface to reach the satellite observation system, as shown in
Fig. 6. Since the water vapour continuum absorption increases with frequency, the trans-
mittance generally decreases, especially in regions of high IWV, such as the tropics (see
Fig. 6).

Figure 6: Total transmittance of the atmosphere in the microwave spectrum in three regions — polar,
standard and tropical — with different temperatures (T) and IWV (V). Sharp reductions of transmittance
are caused by resonant absorption lines while the general decrease with greater frequencies (in GHz) is
due to water vapour continuum absorption. Source: Janssen (1993).

From Eq. (36) it is obvious that changes in TB are caused by variations of tem-
perature and transmissivity and therefore absorption. The absorption strength depends
on the temperature (see Eq. (15)) and density of atmospheric constituents, to which the
dry air density ρd and absolute humidity ρv contribute most (Janssen 1993, pp. 145-
149). The density of atmospheric gases depends on the pressure, as indicated by the
ideal gas law (see Eq. (1)). Hence, the weighting function may be split into a tem-
perature and density weighting function. Fig. 7 shows temperature weighting functions for
channels of a satellite-based microwave sounder (Special Sensor Microwave/Temperature
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Figure 7: Temperature weighting functions of channels of the (satellite-based) Special Sensor Mi-
crowave/Temperature sounder along the oxygen absorption band around 60GHz over land at nadir
observation geometry. The altitude is indicated by air pressure (in mb). Source: Liou (2002).

(SSM/T)) along the 60GHz oxygen absorption line. As the absorption is strongest in
the 58.40GHz channel, the weighting function peaks at the highest altitude or lowest
pressure, respectively. The signal originates from lower altitudes (higher pressure) with
increasing distance to the maximum absorption frequency, unless another absorption line
is approached (Janssen 1993, pp. 136-139, 260-282; Liou 2002, pp. 414-428). Therefore,
as it can be deduced from Fig. 7, the 50.50GHz channel may be used for remote sensing
of surface or near-surface properties. Because oxygen is a well mixed gas whose density is
known, a temperature profile can be inferred using weighting functions peaking in different
altitudes along oxygen absorption lines (e.g. performed by Solheim et al. 1998, Crewell
et al. 2001). In a same manner, a water vapour profile, which is usually not known, can
be derived from observations along resonant water vapour absorption lines, where the
altitude and strength of the weighting function mainly depends on the moisture content.
Satellite-based microwave sounders usually use the 183GHz line to infer water vapour
profiles because the absorption strength is greater compared to the 22.235GHz line (see
also Fig. 6). The latter tends to be too transparent for profiling with a strong background
signal emitted by the ocean and comparably little contribution from the atmosphere.
However, considering the transmittance of the 183GHz line in cases of high IWV (see
Fig. 6), the atmosphere is optically thick for a wide frequency range, preventing surface
signals to reach the sensor. Therefore, a water vapour profile for the entire troposphere
may not be possible, depending on the available frequencies.
Due to the continuum water vapour absorption, also weighting functions along oxy-

gen lines denote contributions from water vapour in low altitudes. This effect obviously
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depends on the moisture content and frequency. In the presence of clouds, emission by
droplets, increasing roughly with the frequency squared (Solheim et al. 1998, Crewell et al.
2001), also affects the measured TB. Since the emissivity of the ocean is low compared
to cloud liquid water, TBs are usually increased in relation to clear sky situations. The
effect is generally best observed in window regions of frequencies lower than 100GHz. Mie
scattering by cloud particles, especially by ice, becomes important at higher frequencies
(> 100GHz) (Cadeddu et al. 2017), balancing the emission by scattering radiance away
from the observation direction. Over land, the emissivities are mostly similar. Therefore,
the presence of clouds usually decreases the measured TB because the weighting functions
are shifted to higher altitudes due to contribution of clouds to absorption. Combining
channels with different sensitivity towards cloud liquid emission, such as a window chan-
nel around 30GHz, where cloud emission is prominent, and a channel in the 22.235GHz
water vapour line, allows the retrieval of LWP and IWV (Westwater 1978, Crewell et al.
2001, Löhnert et al. 2001). Adding another channel in the 90GHz window improves the
accuracy of LWP (Crewell and Löhnert 2003, Rose et al. 2005). Scattering and emission
by precipitation may be exploited to obtain the rain rate (Janssen 1993, pp. 295-301).

2.4 Retrieval Methods

It has been described that temperature and humidity profiles can be derived from TB
measurements. Due to the ill-posed nature of this inverse problem, the retrieval is not
trivial as it will be presented in the following. Weighting functions are generally highly
correlated, as indicated by their overlap (see Fig. 7), showing roughly the same signal for
two adjacent channels (Solheim et al. 1998). Therefore, they provide only a few resolved
altitude levels, which is not ideal to derive vertically strongly varying temperature and
humidity profiles. Above all, the vertical levels are smoothed, implying high correlations
between different altitudes. If we consider to use TB measurements of m = 7 channels
along the oxygen absorption complex at 60GHz to infer a temperature profile with n = 30
levels, the retrieval will be underdetermined as the number of observations m is less than
the number of state variables n (Rodgers 2000, pp. 13-15). Hence, an infinite number
of atmospheric states (solutions) fit the measured TBs, implying an ill-posed problem
(Rodgers 1976, 2000, p. 43). To constrain the solution, additional information about the
atmospheric state must be added (Aires et al. 2001).
In this thesis, two substantially different approaches are considered to derive tempera-

ture (T ) and absolute humidity (ρv) profiles. The regression (section 2.4.1) is a statistical
approach, predicting the atmospheric state from observations after the retrieval has been
trained. The Optimal Estimation (OE) algorithm (section 2.4.2) is a so-called physical
retrieval as it requires forward simulations of the current atmospheric state to form ex-
pected observations. These will then be compared to the actual observations to minimise
the error between both when the retrieval is executed (Solheim et al. 1998, Turner et al.
2007). Compared to regression, the OE algorithm is computationally much more expen-
sive because it requires to perform radiative transfer calculations. However, regression
highly depends on its training data set and tends to be less accurate than OE (Turner
et al. 2007). Before each retrieval is presented, the inverse problem will be formulated in
a general way.
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At first, the forward model, which transforms a state vector x ∈ Rn (e.g. atmospheric
state) into observations y ∈ Rm (e.g. TBs), is given by

y = F (x, b) + ε, (38)

where F is the forward operator, ε the error and b contains additional parameters that in-
fluence the observation (e.g. emissivity) but are not retrieved (Rodgers 2000, pp. 43-45).
Henceforth, b will be omitted for simplification. The forward operator (in this case: RTE)
is characterised by the physics that link atmospheric state and measurements. Prior infor-
mation of the state xa, often taken from e.g. climatology, is commonly used to constrain
the solution of the inverse problem to realistic values in regions where measurements do
not contribute to the retrieval (Rodgers 2000, p. 20-26, 110-111, 159-161; Aires et al.
2001). Linerisation of Eq. (38) about the prior state yields

y = F (xa) + ∂F (x)
∂x

(x− xa) + ε. (39)

The derivative of the forward operator with respect to the state is called the Jacobian
matrix K with entries Kij = ∂Fi(x)/ ∂xj, where i ∈ [1,m] ⊂ N indicates the rows and
j ∈ [1, n] ⊂ N the columns of the matrix. Considering a perfect forward model and
observations without errors (ε = 0) and the number of measurements being equal to the
number of state variables (m = n), the inverse problem can be formulated as

x = xa + K−1 (y− F (xa)). (40)

In this case the solution would be unique and without errors. But since measurement
errors exist and typical remote sensing applications are underdetermined, the forward
problem cannot simply be inverted as indicated in Eq. (40). Instead, other methods,
such as regression and Optimal Estimation, must be applied.

2.4.1 Regression

The simplest retrieval algorithm is the regression, which does not require knowledge of the
RTE because it uses empirical relations between observations and state vectors (Rodgers
2000, p. 113). Before this retrieval is ready to be applied, it needs to be trained with a
dataset that represents the conditions of interest well, otherwise this method will yield
highly erroneous results (Crewell et al. 2001, Löhnert et al. 2001, Rose et al. 2005, Turner
et al. 2007). If the training data does not provide sufficient variance of atmospheric
conditions, the retrieval will always tend to produce solutions similar to the training
data.
The regression algorithm is based on a linear or higher order equation, where coeffi-

cients, also called model parameters (a, b, c, . . . ), relate measurements y to state variables
x. Here, a quadratic regression will be presented because it allows the retrieval to have
more Degrees Of Freedom (DOF) compared to a linear version, as it is able to adapt
more coefficients to describe a state for a given measurement. According to Rose et al.
(2005), nonlinearities are modelled more precisely when higher order terms are included.
Considering a component (j = 1, . . . , n) of a state vector (e.g. altitude level zj) and m
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measurements (e.g. m channels of a MWR), the regression is expressed as (e.g. following
Gelman et al. 1972, Mech et al. 2014)

xjk = aj +
m∑
i=1

(
bjiyki + cjiy

2
ki

)
+ ε with k = 1, . . . , Ntrain. (41)

Ntrain denotes the number of training cases and ε the error. From Eq. (41) it can be
seen that each component (altitude level) of the state vector as well as each measurement
(channel) requires its own coefficient (Gelman et al. 1972), resulting in a total number of
(2m+ 1) · n coefficients for quadratic regression. Equation (41) could easily be expanded
to a cubic regression by adding a third order term with coefficients dji, but this is not
necessary to present the idea of regression. Matrix notation of Eq. (41) often gives a
better overview and simplifies the implementation. Therefore, a component j of the state
vector is obtained by


xj1
xj2
...

xjNtrain


︸ ︷︷ ︸

xj

=


1 y11 · · · y1m y2

11 · · · y2
1m

1 y21 · · · y2m y2
21 · · · y2

2m
... ... · · · ... ... · · · ...
1 yNtrain1 · · · yNtrainm y2

Ntrain1 · · · y2
Ntrainm


︸ ︷︷ ︸

Kreg

·



aj
bj1
...
bjm
cj1
...
cjm


︸ ︷︷ ︸
mestj

+ε. (42)

Note that Kreg does not represent the Jacobian mentioned before. For each component
j of the state vector, a different set of coefficients mestj

is required. If cubic regression
was performed, the third order of measurements would be added as additional columns
to the right of the quadratic terms in Kreg. Furthermore the respective coefficients would
be appended to mestj

.
The goal is to solve Eq. (42) for mest in order to train the coefficients. In the most

simple case, where Ntrain > 2m+ 1, which usually applies for a sufficiently large training
data set, the problem is overdetermined and can be solved via least-squares (Rodgers
2000, pp. 105-106). This entails minimizing (xj −Kreg ·mestj

)T (xj −Kreg ·mestj
), with

T being the transposition operator, for each component j. Therefore,

∇m

[(
xj −Kreg ·mestj

)T (
xj −Kreg ·mestj

)]
= 0 (43)

has to be solved for mestj
where∇m denotes the differential operator with respect to mestj

.
The error term has been neglected as it would have been eliminated by the derivative
anyway. The solution yields an expression from which the coefficients can be trained for
each component j when a training data set is applied

mestj
=
(
KT

regKreg
)−1

KT
regxj. (44)

Once the coefficients have been trained, a new set of measurements may be inserted into
Kreg ≡ Kreg,new to retrieve an estimate of the unknown state

xestj
= Kreg,new ·mestj

. (45)
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2.4.2 Optimal Estimation

In the OE approach, which will be described following Rodgers (1976, 2000), measure-
ments and state vectors are described as probability density functions (pdfs). For exam-
ple, a measurement can be specified by the pdf P (y), exhibiting a most likely value and a
typical spread around it caused by measurement errors. The probability of a measurement
to lie in the range (y, y + dy) is given by P (y) dy. The spread of scalar measurements
equates to the variance σ2

y. This must be expanded to a covariance matrix Sy once the
measurement is a vector (e.g. multiple channels of a MWR). A diagonal entry of the
covariance matrix represents the variance of the respective component, while off-diagonal
entries mark covariances between two parts of the measurement. The same idea may be
translated to the state vector.
Pdfs and errors are assumed to follow a Gaussian distribution for the OE algorithm.

Therefore, the covariance matrices may not be singular to remain invertible. The goal is
to find the most likely state x̂ among all possible states, constrained by prior information,
with a given set of measurements. The inverse problem, to obtain the probability of a
certain state x with a given measurement y, can therefore be expressed by the conditional
pdf P (x|y). Forward modelling is the computation of a measureable quantity under a
certain (e.g. atmospheric) state and is likewise written as P (y|x). This pdf also follows
a Gaussian distribution as it can be seen when noted explicitly

P (y|x) = 1
(2π)m/2 |Sε|1/2 exp

(
−1

2 (y−Kx)T S−1
ε (y−Kx)

)
. (46)

K is the Jacobian and Sε = E(εεT) specifies the observation error covariance matrix,
where E(εεT) is the expected value operator applied on ε = y−Kx. Diagonal entries of
Sε contain individual measurement or model errors (often neglected) while the remaining
elements are dominated by correlations between measurements (e.g. correlations between
channels of a MWR).
Since the exact inversion of the forward model may not exist, the Bayesian Theorem is

exploited to formulate the inverse problem

P (x|y) = P (y|x)P (x)
P (y) . (47)

Hence, the inversion of the forward model is not required. P (x) denotes the prior pdf
of the state variable and is similarly structured as Eq. (46) but includes the prior error
covariance matrix Sa = E((x−xa) (x−xa)T), which contains statistical errors of the prior
state. For example, if the prior information is a climatology of temperature profiles, Sa
will include the variance of temperature on the main diagonal and correlations between
altitude levels in the remaining entries.
The most likely state x̂ is derived using the maximum a posteriori probability of Eq.

(47). Thus, the derivative with respect to x of the conditional pdf describing the inverse
problem must equal zero: ∇xP (x|y) = 0. The term P (y) in Eq. (47) is merely a
normalisation factor and, being constant with respect to x, may be neglected since it will
be erased by the derivative anyway. For convenience, the natural logarithm is applied
on the inserted pdfs first as it will not change the result because the natural logarithm
is a monotonically increasing function. The cost function to be minimised is therefore
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J = (y−Kx)T S−1
ε (y−Kx) + (x− xa)T S−1

a (x− xa). The best estimate of the state is
then given by

x̂ = xa + SaKT
(
KSaKT + Sε

)−1
(y−Kxa) = xa + G (y−Kxa) , (48)

with a spread indicated by the a posteriori error covariance matrix Ŝ = (KTS−1
ε K+S−1

a )−1.
The gain G describes how much information is added to the retrieval by measurements.
It may also be written as G = ∂x̂/ ∂y, stressing the dependency on observations. The
idea of information gain will be presented in a one-dimensional measurement and state
space (gain g = σ2

ak/(σ2
ak

2 + σ2
ε)). For example, if observations are highly erroneous

(large σε), the gain of information is nearly zero and the measurement has therefore no
influence on the best estimate of the state. In that case the retrieval will simply copy the
prior state. When the measurement error is negligible, the prior information is useless.
Another form of information content is provided by the averaging kernel A, characterizing
the sensitivity of the solution on the state itself (A = ∂x̂/ ∂x). Regardless of the prior
error the averaging kernel of an ideal retrieval — without measurement or model errors —
would equal the identity matrix, indicating that the estimated state only changes when
the (e.g. atmospheric) state itself varies. Considering an atmosphere at constant 280K
and the estimate x̂ changes from the truth (280K) to 290K, the measurement must have
caused the variation due to some errors in the instrument (or model). The averaging
kernel is computed via A = GK and furthermore provides information about the model
resolution. Rows of A often feature peaking functions with a certain half-width, indicating
the spatial resolution of the observation. The summation of all diagonal entries of the
averaging kernel yields the DOF of the retrieval, a measure of how many independent
state variables or components of a vector may be obtained.
Since remote sensing applications in the microwave spectrum are generally moderately

non-linear (as assumed by e.g. Rodgers (1976), Löhnert et al. (2004)), the linearised
forward model K is insufficient to find a solution but acceptable for error analysis. The
Jacobian will be redefined as K(x) = ∇xF (x) so that the cost function to be minimised
is now given by

J = (y− F (x))T S−1
ε (y− F (x)) + (x− xa)T S−1

a (x− xa) . (49)

Iterative methods, such as the Newtonian Iteration, must be applied to find the zero of
the gradient of the cost function in moderately non-linear cases

xi+1 = xi − (∇xG(xi))−1 ·G(xi), (50)

with G(x) = ∇xJ = −KT(x)S−1
ε (y− F (x̂)) + S−1

a (x− xa) . (51)

The gradient of G(xi) is known as the Hessian matrix, including the second derivative of
the forward model. The best estimate of the state can be obtained by

xi+1 = xi +
(
S−1
a + KT

i S−1
ε Ki

)−1 [
KT
i S−1

ε (y− F (xi))− S−1
a (xi − xa)

]
, (52)

with the a posteriori error covariance Ŝi+1 = (KT
i S−1

ε Ki + S−1
a )−1. The iteration is

continued as long as the retrieval does not converge or a maximum number of iterations
is exceeded. There are several convergence criteria but only one will be presented here.
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In measurement space, the iteration step must be one order of magnitude smaller than
the number of measurements

d2
i = (F (xi+1)− F (xi))T S−1

δŷ (F (xi+1)− F (xi)) < 0.1m, (53)

where Sδŷ = Sε (K̂SaK̂T + Sε)−1 Sε is the covariance of δŷ = y−F (x̂) and K̂ = ∇xF (x̂).
After convergence, a χ2 test is often performed to check if the forward modelled best

estimate (F (x̂) = ŷ) state agrees with the observation y. The quantity χ2 = δŷT ·S−1
δŷ ·δŷ

is supposed to be a member of a Gaussian distribution with zero mean and covariance Sδŷ
(null hypothesis). If only a small fraction (here 5%) of members of a Gaussian distribution
have a probability density less than that of χ2, then the tested quantity is considered to
be an outlier. Hence, the Gaussian distribution would not describe the behaviour of χ2

well, as it was actually supposed to. Therefore, the observations cannot be reproduced
by the forward modelled best estimate state at a significance level of 5 %.
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3 Data and Methods

This chapter starts with a brief description of the NAWDEX campaign and an overview
of the selected case study (3.1). As the AR itself will be analysed in chapter 4, merely
background information will be provided. It is followed by a presentation of the used data
sets and instruments (3.2). At the end of this chapter, the retrieval development for both
methods (regression and OE) will be explicated (3.3).

3.1 Atmospheric River during the NAWDEX Campaign

The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) cam-
paign, which is presented following Schäfler et al. (2018), aimed to investigate the role
of diabatic processes when interacting with the dynamic flow related to mid-latitude cy-
clones. Since these processes are particularly distinct over the warm ocean, the campaign
took place in fall 2016 over the North Atlantic. A better understanding of these processes
may improve weather forecasts of subsequently emerging high impact weather. Observa-
tions assimilated for NWP, mostly relying on cloud-free satellite and sparse ground-based
data, are insufficient regarding resolution and area coverage to accurately sample diabatic
processes, which predominantly occur over the ocean and are accompanied by clouds.
Measurements from microwave observation systems onboard polar orbiting satellites are
capable to retrieve the atmospheric state and hydrometeor information in cloudy condi-
tions, but usually have only one overflight over a certain region every 12 hours (or even
24 hours in low latitudes) (Janssen 1993, pp. 262-272). Hence, the actual target may
be missed. Geostationary satellites do provide high temporal resolution but observations
are mainly confined to latitudes between 60◦S–60◦N. Microwave observations from geo-
stationary satellites have not been realised because a large antenna size would be required
to provide the same resolution as polar orbiting satellites (Janssen 1993, pp. 262-272).
Consequently, the NAWDEX campaign was set up with specialised observation systems
on multiple research aircrafts — HALO, DLR Falcon, SAFIRE Falcon and FAAM BAe
146 — and ground sites in Iceland, the United Kingdom and France to address these
problems. Deploying multiple research aircrafts allowed to observe airmasses at different
locations, giving insight into different stages of cyclones.
The resolution of passive microwave observations from polar-orbiting satellites

(15–50 km) (Janssen 1993, pp. 264-272) is low compared to aircrafts, e.g. HALO with
1–2 km (Mech et al. 2014), because of the distance to the target. Furthermore, the path
of polar orbiting satellites is strictly predefined and cannot be altered, while aircrafts
allow flexible flight paths, which can be selected to sample a target of interest. Merely
the North Atlantic flight track of commercial airliners is supposed to be avoided due to
safety regulations (Mech et al. 2014). The Air Traffic Control must be informed of flight
paths two or three days in advance (Schäfler et al. 2018). This possibly leads to imper-
fect sampling of a target because its exact position may not have been predictable at a
forecast lead time of several days, especially because the examined processes are not well
represented in NWP models.
In the first part of the campaign (mid September 2016) a blocking high over Scandinavia,

associated with a high tropospheric ridge (R1 in Fig. 8), and strong cyclone activity
over the North Atlantic ocean, especially south of Iceland and Greenland, marked the
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Figure 8: Map plots of the North Atlantic showing the potential vorticity (PV) at the 325K isentropic
surface (PV < 2 PVU: white, 2 ≤ PV < 5 PVU: red, 5 ≤ PV < 8 PVU: orange, PV ≥ 8 PVU: yellow).
Mean sea level pressure is displayed in blue contours at an interval of 10 hPa. Gray contours mark wind
speeds of 60, 70 and 80m s−1. R1–R5 indicate upper-tropospherical ridges, C marks a cut-off. The plot
shows the reintensification phase of ex-tropical storm Karl (K) and development of extratropical cyclone
Walpurga (W). The data is based on the Integrated Forecasting System (IFS) of the European Centre
for Medium-range Weather Forecasts (ECMWF). Source: Schäfler et al. (2018).

meteorological conditions (Schäfler et al. 2018). Between the 25th and 28th September, ex-
tropical storm Karl (K in Fig. 8) propagated to higher latitudes and was reintensified when
merging with another cyclone, which was located at the backside of a ridge (R2). This
led to the formation of a jet streak, which subsequently disrupted the blocking situation,
and another ridge (R3 in Fig. 8) (Schäfler et al. 2018). Ridge R3 was relative to an
anticyclone located to the west of the Spanish and Portugese West Coast. The flow of the
anticyclone and that of ex-tropical storm Karl jointly form a confluence zone, converging
moisture into a filamentary structure, generating an AR. To the west of ridge R3, cyclone
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Walpurga (W in Fig. 8) developed and got connected with the AR. Together, cyclones
Karl and Walpurga caused severe floods in southern Norway with a total precipitation
of 140mm from 27th to the 29th September 2016 (Johannessen and Moore 2018). The
prediction skill of this high impact weather event was worse compared to the preceding
blocking situation (Schäfler et al. 2018).
This AR, located over the North Atlantic to the south of Iceland and to the east of the

United Kingdom and France, was sampled by the High Altitude and Long Range Research
Aircraft (HALO) during research flight RF05 on the 27th September 2016. The flight
aimed to investigate the low-level moisture structure in an AR and WCB inflow region
and the impact on downstream weather evolution (Schäfler et al. 2018). Measurements
from dropsondes, the multi-channel MWR, the cloud radar and lidar onboard HALO
will be utilised to investigate the thermodynamic structure of this AR event. These
instruments will be presented in the following subsection.

3.2 Instruments and Data

HALO is particularly versatile compared to other research aircrafts because its range of
12500 km (or 10 flight hours) allows sampling of remote locations (Mech et al. 2014).
With a ceiling of 15 km it is able to fly above the commerial flight track and even ob-
serve high altitude clouds from above (Mech et al. 2014, Schäfler et al. 2018). Onboard
HALO sufficient power is available to operate passive and active microwave observation
systems, making this aircraft well suited to investigate cloudy regions. HALO is further-
more equipped with a launch system for dropsondes, a lidar and in-situ measurements
of atmospheric parameters, called the Basic HALO Measurements and Sensor System
(BAHAMAS). In addition, a NWP model data set is introduced here, which is critical for
both the retrieval development and evaluation.
The MWR is a part of the HALO Microwave Package (HAMP) attached to the bottom

of the aircraft, covered by the belly pod (see Fig. 9). It consists of three nadir-pointing
modules (on the left in Fig. 10), spanning the microwave spectrum from 22.24 to 183.31±
12.5GHz with a total number of 26 channels (Mech et al. 2014). Each module is designed
for a different frequency range.
The first module, called HAMP-KV, measures with seven channels in both the K and V

band, ranging from 22.24 to 31.4GHz and 50.3 to 58GHz, respectively (Mech et al. 2014).
Water vapour and temperature profiles, as well as integrated quantities (IWV, LWP)
can be retrieved. The 31.4GHz channel lies in a window region with weak water vapour
continuum absorption. Hence, the ocean background signal of roughly 160K and emission
by clouds can be detected, leading to higher TBs. The second module, commonly referred
to as HAMP-11990, contains one window channel at 90GHz (W band) and four channels
as double-side band around the 118.75GHz oxygen absorption line (F band) (Mech et al.
2014). These channels are less affected by the ocean background signal because the water
vapour continuum absorption increases roughly with frequency squared, as mentioned in
section 2.3.4. While the F band provides another opportunity to retrieve temperature
profiles, the W band may be used to improve LWP calculations according to Crewell
and Löhnert (2003). The third module (HAMP-183) covers the 183.31 water vapour
absorption line (G band) with seven double-side band channels (Mech et al. 2014). Even
the most transparent channel in the G band (183.31±12.5GHz) hardly receives any signal
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Figure 9: Belly pod on the bottom of HALO. Source: Mech et al. (2014).

from the surface because of the strong water vapour continuum absorption (Skofronick-
Jackson and Johnson 2011, Solheim et al. 1998). This band is commonly used for water
vapour profiles although the surface may be obscured. Table 1 gives an overview of all
channels and their typical applications of the MWR onboard HALO.
To ensure accurate TB measurements, the MWR must be thermally stabilised and cali-

brated regularly. During the flight, the receiver noise temperature is inquired by switching
the view to an internal reference target at ambient temperature every 60 s. The internal
noise diode provides a reference to reduce the gain error. In preparation of most flights
an absolute calibration is performed (Mech et al. 2014). This entails placing two external
reference targets that are approximately black bodies in the microwave spectrum below
the radiometers (Janssen 1993, pp. 20-21; Mech et al. 2014). To ensure absolute accuracy
over the entire range of expected TBs, one of the targets is at ambient temperature and
one is cooled by liquid nitrogen (Küchler et al. 2016). The absolute accuracy lies between
0.5K for HAMP-KV and 1.5K for the higher frequency channels (Mech et al. 2014).

Table 1: Overview of the MWR channels and their applications. Information taken from Mech et al.
(2014).

Band Frequencies (GHz) Application
K 22.24, 23.04, 23.84, 25.44, 26.24, 27.84, 31.40 IWV, LWP, humidity profile
V 50.3, 51.76, 52.8, 53.75, 54.94, 56.66, 58.00 temperature profile
W 90.0 LWP
F 118.75±8.5, 118.75±4.2, 118.75±2.3, 118.75±

1.4
temperature profile

G 183.31±12.5, 183.31±7.5, 183.31±5.0, 183.31±
3.5, 183.31± 2.5, 183.31± 1.5, 183.31± 0.6

humidity profile

With an air speed of approximately Mach 0.885 at 13 km altitude, opening angles of
the modules ranging from 2.7◦ for HAMP-183 to 5◦ for HAMP-KV and an integration
time of 1 s the across- and along-track resolutions are roughly 1 km (Mech et al. 2014).
Therefore, the horizontal resolution of the MWR is much finer than that of dropsondes
released, which would be about 50 km if released every five minutes.
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Figure 10: Instruments (left: MWR, consisting of three modules; middle: lidar; right: cloud radar) on
the bottom of HALO, usually covered by the belly pod. Source: Mech et al. (2014).

The cloud radar MIRA-36 onboard HALO represents the other part of HAMP (on the
right in Fig. 10). The two receivers allow for co- and cross-polarised observations, from
which the particle shape can be inferred (Melchionna et al. 2008). The backscattered
radar beam, which was emitted at a frequency of 35.6GHz, a pulse length of 200 ns and
pulse repetition frequency of 5 kHz, gives insight into the backscattered power, namely
the radar reflectivity, the Doppler spectrum, Doppler velocity, spectral width and linear
depolarisation ratio (Melchionna et al. 2008, Mech et al. 2014). Due to the integration
time of 1 s the measurement rate is 1Hz. The Doppler spectrum must be corrected for
the aircraft motion and for broadening caused by the radar beam with a width of 0.6◦
pointing into and against the flight direction. Compared to the more commonly deployed
94GHz radar, the beam of MIRA-36 is less attenuated by hydrometeors. During flight
operation at 13 km altitude, the minimum detectable radar reflectivity is approximately -
30 dBZ with a footprint size of 130m. The range resolution of 30m allows to observe small
scale cloud variations. The cloud radar is also equipped with internal reference targets for
continuous calibration. It is indirectly capable of sensing microphysical characteristics of
clouds, such as the hydrometeor distribution and particle size. Therefore, measurements
of the MWR and MIRA-36 are complementary (Mech et al. 2020). This implies that
HAMP offers a rather complete set of microwave observations.
The differential absorption lidar (Water Vapour Lidar Experiment in Space (WALES),

middle in Fig. 10) sends out electromagnetic pulses in the near infrared at four different
wavelengths along the 935–936 nm water vapour absorption band (Wirth et al. 2009,
Mech et al. 2014). With a pulse length of 100 ns the range resolution is 15m, allowing to
retrieve high resolution profiles of water vapour between the aircraft and the top cloud
layer (Schäfler et al. 2018). Attenuation by cloud particles due to scattering generally
limits the beam range. Furthermore, the backscatter may be used to identify the highest
cloud top altitude and, in case of thin clouds, that of lower layers. The pulse is further
attenuated by aerosol scattering, eventually limiting the range of the lidar. WALES is
able to detect clouds with smaller droplet sizes that may be invisible in the cloud radar.
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The BAHAMAS instruments measure in-situ temperature, pressure, relative humidity
and wind at a rate of 100Hz (Wendisch et al. 2016, Schäfler et al. 2018). In the CERA
database version the measurement rate was reduced to 1Hz by Konow et al. (2019) to
coincide with other instruments. Additionally, BAHAMAS provides information about
the aircraft altitude, position, true airspeed, heading and attitude (roll and pitch angle).
Altitude information is critical for the retrievals to identify the heights that contribute
to MWR measurements. The atmospheric parameters measured by BAHAMAS partly
serve as extrapolation targets of missing dropsonde measurements at the beginning of
their descent.
At the tail of HALO, a launch system for Vaisala RD94 dropsondes is installed. Air

traffic control has to be informed of each launch. Above the flight track of commercial
airliners, the deployment of dropsondes is prohibited to avoid safety irritations (Schäfler
et al. 2018). The dropsondes measure temperature, pressure, relative humidity and
horizontal wind speed and direction with an accuracy of 0.2K, 0.4 hPa, 2% and 0.5m s−1

(Hock and Franklin 1999, Vaisala 2017). The Doppler shift of the Global Positioning
System (GPS) signal is tracked to derive wind speed and direction at a rate of 4Hz.
Capacitive sensors measure temperature, relative humidity and pressure at a rate of 2Hz.
The dropsonde fall velocity varies between 11m s−1 at the surface and more than 20m s−1

at the tropopause. Due to instrument inertia, certain response times to adapt to changing
environmental conditions — e.g. 2 s for the temperature and up to 20 s for the humidity
sensor at -40 ◦C — must be respected. This and the dynamic pressure caused by the de-
scent velocity are usually corrected in post-processing (Hock and Franklin 1999). Konow
et al. (2019) have interpolated the dropsonde data to a uniform vertical grid with a reso-
lution of 30m, so that the original resolution of 5–10m has been reduced to coincide with
radar and lidar measurements.
The NWP model named Integrated Forecasting System (IFS) from the European Cen-

tre for Medium-range Weather Forecasts (ECMWF) is also used in this thesis to build
and validate the retrievals and as another reference besides the dropsondes for the AR
structure analysis. Two time steps for the 26th September 2016 (7 and 19 UTC) cover the
North Atlantic ocean in the range 40–80◦N, 50–10◦W and another three files for the 27th
September 2016 (10, 16 and 22 UTC) span the area 40–70◦N, 40–10◦W. The utilised cycle
41r2 of the IFS, introduced in 2016, offers the highest resolution of all global NWP mod-
els of that time (ECMWF 2016). With a grid spacing of 0.1◦ (≈ 9 km) on an octahedral
grid and 137 vertical levels the number of grid points has increased by a factor of three
compared to its predecessor, allowing to resolve more details of atmospheric features (e.g.
ARs). Among other changes, more microwave observations in difficult retrieval situations
(e.g. above ice and mountains) have been included in the data assimilation, improving
the analysis of the atmospheric state and the forecast itself.

3.3 Retrieval Development

In order to track the results, the setup of both retrieval methods to derive temperature T
and absolute humidity profiles ρv are presented in the following section. Before building
the retrieval, the dropsonde, MWR and cloud radar data, taken from Konow et al. (2018),
are inspected. The data sets have been controlled for quality and interpolated to a uniform
vertical grid with a resolution of 30m by Konow et al. (2019). In addition, temporal
coincidence between the instruments is assured.
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A total of 20 dropsondes were launched during RF05, of which the last one is neglected
in this study because it did not cover the AR. In two thirds of the time between the first
and last considered dropsonde launch (12:23 and 17:44 UTC), the aircraft flew within
8850 and 9150m altitude and in the remaining time between 8450 and 8850m. The com-
parably lower flight altitude is constrained to the first part of the flight when HALO flew
southwards from Iceland to approach the AR. Since the sensors of the dropsondes need to
adapt to the environmental conditions after launch, several hundred meters at the top of
the profiles are missing. These gaps are filled up to an altitude of 9000m via extrapolation.
For the temperature and relative humidity, the BAHAMAS measurements are used as tar-
gets while the pressure is extrapolated via the hydrostatic equation p(z) = p0 exp(−z/H),
where z is the altitude, p0 the sea surface pressure and H = Rd〈T 〉/g the scale height
with the layer mean temperature 〈T 〉 (Holton 2004, pp. 20-21). Additionally, since the
final GPS signal was usually received 5–15m above the sea level missing surface values of
latitude, longitude and wind are linearly extrapolated from the last two measurements.
Gaps in the middle of the sonde profiles are linearly interpolated.

3.3.1 Regression

The development of the regression is exemplified for a temperature retrieval. For the
used cubic regression, the third order of TB measurements and another set of coefficients
dj1, . . . , djm have to be added to Eq. (42). The resulting matrix notation is given in
Appendix A, Eq. (A.1). The retrieval grid ranges from the surface to 9000m with 31
equdistant levels. With a carefully selected training data set, which will be described in
the following paragraph, the coefficients may be estimated as indicated in Eq. (44).
The IFS files mentioned in section 3.2 have been forward simulated with the Passive

and Active Microwave radiative TRAnsfer (PAMTRA) tool by Dr. Mario Mech to provide
virtual TB measurements. Gaussian noise with a strength of 0.5K for HAMP-KV and
1K for the other modules is added to imitate noise of the MWR. PAMTRA will be
briefly described in the subsequent section (3.3.2). An overview of the selected training
and test area is given in Table 2. The IFS file covering the 27th September 2016 at
16 UTC, henceforth referred to as IFS4, is used as test data because this timestamp
roughly corresponds to the mean time of the HALO flight. The region of the training
data (IFS1+2+3+5) is chosen not only to cover the AR, but also to exceed its boundaries
to increase the variance of atmospheric parameters. Hence, the cold air to the north and
the subtropical airmass to the south of the AR are included. Fig. 11 demonstrates the
selection choice for IFS1, when the AR was located to the south of Greenland and Iceland,
illustrated by IVT values exceeding 1000 kg m−1 s−1.
A search for the optimum observation combination is performed to reduce the deviation

of the retrieved to the true temperature profile of the test data (IFS4). It is expected that
the inclusion of more measurements reduces errors. At first, the channels in the V band
are selected as basic measurements that should always be included because they contain
the highest information content regarding a temperature profile. Then, to reduce the
total number of combination iterations, all possible combinations of the basic channels
with single or multiple K band channels are tested. The search for the best channel is
illustrated in Fig. 12. A general reduction of the low-level (0–3000m) Root Mean Square
Error (RMSE) of temperature over all test cases with increasing number of active channels
can be observed. However, including channels close to the K band window (31.4GHz)

38



Table 2: Overview of the training and test data. Latitude (lat) and longitude (lon) boundaries are
given in the following format: (lower boundary, upper boundary). Additionally, the distancing between
selected grid points is given as (latitude spacing, longitude spacing). The total number of grid points is
Ntrain = 8840 for training and Ntesting = 7191 for testing.

Date and time (YYYY-
MM-DD HH:MM:SS)

Short name lat (◦N) lon (◦E) distance (◦)

Training: 2016-09-26 07:00:00 IFS1 (40, 54) (-50, -30) (0.5, 1)
2016-09-26 19:00:00 IFS2 (40, 54) (-50, -20) (0.5, 1)
2016-09-27 10:00:00 IFS3 (40, 54) (-40, -15) (0.1, 1)
2016-09-27 22:00:00 IFS5 (40, 54) (-40, -15) (0.1, 1)

Testing: 2016-09-27 16:00:00 IFS4 (40, 54) (-40, -15) (0.1, 0.5)

Figure 11: Training data pixels (red dots) to the south of Greenland for IFS1 with underlying filled
contours of Integrated Vapour Transport (IVT, in kg m−1 s−1) to display the AR.

seems to increase the RMSE by a few per cent. Errors in higher altitudes decrease similarly
but since ARs are most prominent in low altitudes the focus is shifted to that specific
layer. The combination resulting in the lowest overall RMSE between the retrieved and
modelled temperature profile of the test data (IFS4) in 0–3000m altitude (see Fig. 12)
is chosen for scanning the remaining channels. If the best channel search was not split, a
total number of ∑Nc

k=1 Nc!/(k! (Nc− k)!) ≈ 5 · 105 iterations would be required for Nc = 19
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remaining channels. With splitting, the number of remaining channels is reduced to 12.
For absolute humidity, the G band is picked to provide the basic measurements, followed
by scanning through the K band and ultimately through the remaining channels.

Figure 12: (a): Low-level (0–3000m) Root Mean Square Error (RMSE) evolution of temperature (in
K) plotted against the index of the current active channel in the search algorithm. (b): Matrix indicating
the active channels (frequencies in GHz) in black. The V band is always included. The red stripe marks
the channel combination with the lowest RMSE. Data from IFS4 has been used.

Once the regression coefficients are trained with the best channels, the test data (IFS4)
is used to give a first idea of the retrieval performance (on modelled data). Note that
this procedure is applied to virtual measurements of IFS4, based on the same physics,
parametrisations and forward model as the training data. Therefore, the behaviour of
the retrieval may seem to be coupled to the specific NWP model, but it will be shown in
chapter 4 that the regression is applicable to real measurements. The test on IFS4 rather
represents the best possible performance of the retrieval. The RMSE of temperature
over all test cases ranges from 0.8–1.3K, where the lower value corresponds to 3000m
altitude and the higher value represents the error at the surface (not shown). Compared
to quadratic or linear regression, the inclusion of a cubic term yields the lowest RMSE over
all layers. The step from linear (quadratic) to quadratic (cubic) terms reduces the retrieval
errors by approximately 10% (5%, not shown) because inversions in the boundary layer
are less smoothed out. The inclusion of a fourth order term is not pursued because it has
nearly no influence on the retrieval performance.
To avoid negative absolute humidity values in the retrieved profile a combination of

logarithmic (log) and direct humidity profile is implemented. The non-log profile yields
overall smaller RMSEs but tends to cause negative values in the upper troposphere. The
opposite applies for the log profile. Therefore, a transition zone from the fourth to the
first level below the first negative value is established. Upwards through the transition
the weight of the log profile increases linearly.
The final channel selection is generally geared to the best channel search. To apply

the regression on HAMP MWR measurements, they are compared with IFS4 virtual
measurements along the RF05 track. Sudden peaks caused by clouds and precipitation
dominate the difference between HAMP and virtual TBs. Because the W and transparent
F band channels are particularly sensitive to liquid water emission from cloud particles,
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they are excluded from the final selection. It is assumed that the regression coefficients
of these channels do not represent the relation between HAMP TBs and temperature
well. Testing the regression on HAMP MWR measurements, averaged around dropsonde
launches (±5 s), confirmed that this selection improves both humidity and temperature
profiles. Near surface values coincide better with dropsonde measurements. For the
humidity retrieval, the most transparent G band channel was additionally excluded.
The aforementioned comparison of the IFS4-modelled with the HAMP MWR measure-

ments reveales that offsets, that have been added to each MWR channel by Konow et al.
(2019), partly impaired biases. Their clear sky bias correction algorithm entailed forward
modelling of dropsonde measurements without hydrometeors and comparing the result
with HAMP MWR observations. The offset computed by this procedure was then added
to the MWR TBs. The algorithm did not work properly because their dropsonde extra-
polation generated a sharp bend, resulting in too low temperatures at aircraft altitude.
Especially the opaque V band channels, having the sharpest weighting function close to
the aircraft, are affected by the offset correction. With the forward simulation of drop-
sondes, extrapolated as noted earlier in this subsection, new offsets are computed for the
entire V band. The HAMP TBs with new offsets are subsequently checked and adapted
to match the IFS4 and the self-created forward simulated dropsonde virtual measure-
ments. This is done by eye to respect the temporal and spatial offset between RF05 and
the atmosphere in IFS4 and simultaneously sustain the coincidence with the dropsonde
simulated TBs. Table 3 gives an overview of the offset update.

Table 3: Clear sky offsets in the V band of the MWR data in (Konow et al. 2018) (Old) and recomputed
offsets (New) are shown. Additionally, the offset difference is shown.

Frequency (GHz) Old offsets (K) New offsets (K) New−Old (K)
50.30 2.55 2.95 0.4
51.76 1.45 1.85 0.4
52.80 1.44 1.64 0.2
53.75 -0.47 -0.47 0.0
54.94 -0.31 -0.71 -0.4
56.66 1.62 -0.72 -2.34
58.00 3.83 -0.73 -4.56

3.3.2 Optimal Estimation

In this thesis, the OE package from Maahn et al. (2020) is used with PAMTRA as for-
ward operator. PAMTRA is able to simulate simultaneously active and passive microwave
observations for a plan-parallel, one dimensional, horizontally homogeneous atmosphere
(Mech et al. 2020). Different observation geometries, e.g. satellite- or ground based,
can be realised at any observation angle. The height of the simulated instrument is also
specified by the user. Regarding passive microwave observations, both up- and down-
welling polarised TBs can be simulated.
During the development and test phase, the best results were achieved when the state

vector consisted of LWP, temperature and humidity profile. With this setup, OE is able to
adapt the atmospheric state more freely than for a separated temperature and humidity
retrieval. LWP is included as an auxiliary variable to allow OE to modify the cloud water.
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To reduce computation time but preserve the possibility to resolve inversions, the retrieval
grid spans 0–9000m with a spacing of 200m. For the forward model the absolute humidity
is converted to relative humidity. Additionally, if negative relative humidity values appear
throughout the iteration, they are set to zero. The observation vector contains six chan-
nels in the K, seven channels in the V band and the sea surface temperature (SST) given
by IFS4 at the closest grid point to the current MWR observation. The 31.4GHz, W, F
and G band channels are excluded due to their high sensitivity to cloud water (and ice
for the G band), which impairs the temperature and humidity profile retrieval. According
to Mech et al. (2020), the scattering effect by ice particles still suffers from large uncer-
tainties because of the high variability of frozen hydrometeors (shape, size, orientation,
density). The Mie scattering model, which assumes spherical particles, underestimates
the reduction of TBs. Additionally, the load of frozen hydrometeors in the considered
application on HAMP measurements is unknown and would have to be assumed. A best
channel search, as presented in section 3.3.1, cannot be performed because OE requries
too much computation time. PAMTRA is only used as forward operator to simulate the
MWR measurements. In the retrieval, the SST observation is imitated by a unity forward
operator of the temperature at the lowest level. Hence, the virtual SST measurement is
simply set equal to the respective state vector component. Observation and state vector
can be summarised as

x = (T0, . . . , T9000, ρv,0, . . . , ρv,9000,LWP) and (54)
y = (Tb,22.24, . . . , Tb,27.84, Tb,50.30, . . . , Tb,58.00, SST). (55)

The TB observation covariance matrix entries are upscaled from noise identification
measurements — presented in Jacob (2020) — so that the diagonal entries equal the
absolute accuracy of 0.5K as stated by Mech et al. (2014). The covariance entry for the
SST is chosen arbitrarily but not too constrictive (4.65K2). Otherwise the retrieval would
assign the observed SST as a fixed value to the lowest temperature level. The covariance
matrix is given in Appendix A, Eq. (A.2). It is acknowledged that there are two minor
errors regarding the upscaling, which are also described in Appendix A. Since the errors
were spotted too late and their influence does not critically change the outcome, they
were not corrected. Sensitivity studies with various observation covariance matrices have
been performed for this retrieval setup to affirm this assumption. Model errors are not
considered in this OE setup.
Prior information of temperature and absolute humidity is provided by the mean

values and covariance of the same data set that has been used for training the regres-
sion (IFS1+2+3+5). The prior information is interpolated onto the retrieval grid. Prior
LWP is set to 0 kg m−2 with a variance of 0.1( kg m−2)2. The iteration of OE starts with
the prior information as first guess in this setup.
During the retrieval, LWP is changed to values greater than zero if clouds are present.

The LWC is uniformly distributed over all cloudy layers below freezing level. The cloud
radar reflectivity and lidar backscatter ratio measurements are exploited to define cloud
boundaries at a resolution of 30m. The detected cloud boundaries are later interpolated
to the retrieval grid with a resolution of 200m. The highest cloud top can best be seen by
the lidar because it is sensitive to smaller hydrometeors than the cloud radar. Pointing
nadir from the aircraft to the surface, the first missing backscatter ratio measurement
marks the cloud top. When a lidar signal below the cloud exists, it can be used to
detect the base of the top cloud layer as the last missing backscatter ratio value. This
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procedure is repeated for a second cloud layer, after which the lidar beam is usually
entirely attenuated, which means that no signal from that or lower layers is detected.
Independently, the layers where the radar reflectivity is greater than -44 dBZ are marked
as cloudy. Subsequently, it is inspected if the cloud detected by the lidar is also seen by
the radar. This is considered to be true if the cloud top altitudes differ less than 100m.
Within the estimated cloud boundaries, the LWC and therefore the LWP may be greater
than zero. If negative LWP or LWC values appear, both are set to zero, as proceeded
by Cadeddu et al. (2007). In case of clear sky conditions, the LWP is set to zero and
does not change during the retrieval. Including LWP in the state vector and locating
cloud boundaries helped to increase the number of converging cases when the retrieval
was tested on HAMP measurements around dropsonde launches. The altitudes of the
cloud boundaries are kept constant for all iterations of the retrieval.
In PAMTRA, the rain, snow and ice water contents are set to zero because their precise

estimation would require to include radar measurements and assumptions on the particle
size distribution. Lack of time prohibited to pursue this approach so that merely the
LWC remained in use. PAMTRA requires the atmospheric state, hydrometeor settings
and background information as input. For the application of OE on the HAMP data, the
sea surface temperature (also in the observation vector y), pressure and surface winds
are provided by IFS4 at the pixel that is closest to the currently considered part of the
RF05 track. The observation height, defined as the altitude where the microwave sensor
is located, is assumed to be 8500m until 13:47 UTC and 9000m afterwards. This is the
timestamp when the aircraft reached an altitude of 8750m. A more precise specification
of the observation height, e.g. in steps of 100m, neither improved nor impaired the
temperature profile during tests around dropsonde launches. Therefore, because the gain
in precision is generally insignificant, the observation height remains 8500 and 9000m.
PAMTRA settings that deviate from default and other boundary conditions are given in
Table 4. The Fresnel scattering model, which applies to a calm sea surface, is corrected for
roughness if wind information is provided (Mech et al. 2020). In this thesis, the standard
gas absorption model of Rosenkranz (1998) (R98) is used. The descriptor file, which
defines the microphysical hydrometeor settings, is noted in Appendix A, Tables A.1–A.3.

Table 4: Overview of the PAMTRA settings adjustable in nmlSet.

nmlSet key Boundary condition Description Chosen setting
active Active microwave observations False

sfc_type surface type: 0: ocean, 1: land 0
sfc_model surface model: 0: ocean, 1: land 0
sfc_refl surface reflectivity model: F:

Fresnel
F

The disturbance factor of the state vector for the computation of the Jacobian remains
at its default value of 1.01 for the temperature and humidity profile. However, for LWP,
an additive disturbance of 5 · 10−3 kg m−2 is applied. The maximum number of iterations
is set to 10, after which the execution is stopped if the retrieval has not converged (see
convergence criterion: Eq. (53)). Subsequently, a χ2 test is applied to check if the retrieval
converged to a solution, which is consistent with the observations.
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4 Results

After building the retrievals mostly with virtual measurements, it is time to apply the
HAMP MWR observations to them. Firstly, the error between the retrieved profiles and
the dropsonde data is evaluated (4.1). This provides a reference for the actual retrieval
performance. Additionally, section 4.1 contains deviations of the retrieval methods to IFS4
and linearly interpolated dropsonde data, covering RF05 between the first and second to
last dropsonde. In section 4.2, the structure of the AR event, captured by HALO on the
27th September 2016, is analysed with all four data sets of temperature and humidity.
Furthermore, an overview of the AR event is given to understand the retrieval behaviour.
The benefit of microwave remote sensing is pointed out in section 4.3, assessing in what
sense the common dropsonde sampling of ARs is improved.

4.1 Retrieval Performance

Assessment of the retrieval performance requires knowledge of the true atmospheric state.
In this setup, there are two options to validate the retrieval methods. One is the com-
parison of retrieved profiles from virtual measurements to IFS4 profiles. This has been
done for the regression during the retrieval development (testing, see section 3.3.1) but
not for the final OE setup because the virtual IFS4 measurements do not include radar
and lidar measurements for cloud boundary computation. Therefore, the other validation
option must be considered. HAMP measurements averaged over ±5 s around 19 of 20
dropsondes are applied to both regression and OE. Although the number of dropsonde
launches for validation is fairly low, the standard deviation of temperature and humidity
over these cases is significant (4–6K for temperature and 2–3 g m−3 for humidity in low
levels, see Appendix B, Fig. B.1). Therefore, due to the baroclinicity of the scene, the
retrieval can be tested for different airmasses.
At first, the temperature retrieval performance is assessed. As expected, the RMSE

between the retrieved and dropsonde measured temperature is generally lower in high
altitudes close to the aircraft. The minimum RMSE is located at around 8000m altitude
with 0.4K and 0.7K for OE and regression, respectively (see left column of Fig. 13). The
increase of temperature RMSE from 8000–9000m may be caused by dropsonde extra-
polation targeting imperfect BAHAMAS measurements. The latter could be biased with
respect to the currently applied MWR offsets in the opaque V band that are chosen to
match with forward simulations. In the middle troposphere (2000–7000m), the RMSE
of both retrievals is similar (0.8–1.2K) (see left column of Fig. 13). When considering
dropsonde launches in clear sky conditions (launches 1–3 and 8–10), the regression per-
forms worse than OE in the middle and upper troposphere by 0.3–0.5K (not shown).
Within the AR core, the regression denotes reduced RMSE values in the middle and
upper troposphere compared to clear sky conditions and similar or slightly lower RMSE
than OE. This behaviour of the regression reflects the choice of training data. As soon as
the meteorological conditions of a test case deviate significantly from the training data,
the regression yields higher errors. OE errors compared to dropsonde measurements are
similar for all three cases (all vs. clear sky vs. AR core) in the middle and upper tropo-
sphere. The temperature RMSE of OE is lower than the square root of the a posteriori
error covariance in almost all heights, which means that the dropsonde profile is roughly
in the centre of the best estimate probability density function.
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The lower tropospheric RMSE generally increases for both regression and OE when
focussing on the AR core because temperature inversions exist. Due to the coarse vertical
resolution of sounding via microwave remote sensing, inversions cannot be resolved (see
Fig. 14 (a)) and are therefore smoothed, leading to increased errors above and below
them. The regression captures inversions better than OE because of the selection of
training data. Furthermore, the weighting functions are broad in the lower troposphere,
prohibiting the OE retrieval to resolve fine structures as inversions. OE has got 2.69 +
1.77 + 0.83 = 5.29 DOF on average over 19 of 20 dropsonde launches for temperature,
absolute humidity and LWP, respectively. Therefore, 2.69 of originally 46 altitude levels
are resolved, albeit smoothed, for the temperature profile with 14 observations. At the
surface the temperature RMSE of OE is lower compared to regression because the sea
surface temperature from IFS4 is included as observation (see left column of Fig. 13).
The retrieval error of temperature generally agrees with the findings of Mech et al. (2014)
(see their Fig. 7).

Figure 13: RMSE between dropsonde and the retrieval options (regression (RE, blue) and OE (red
solid)). The left (right) column shows the temperature (absolute humidity) RMSE in K (kg m−3). Addi-
tionally, the square root of diagonal entries of the a posteriori error covariance matrix of the respective
state variable Ŝdiag,T,ρv is displayed (red dotted).

The retrieval of absolute humidity proved a bit more challenging. As it can be seen in
the right column of Fig. 13, the regression RMSE in 6000–8000m altitude (0.2–0.08 g m−3)
roughly equals that found by Mech et al. (2014) (see their Fig. 7). However, the RMSE of
OE is up to three times greater and almost equals 100% when normed by the observation
(relative RMSE, not shown). At the surface, the RMSE of humidity is 1 g m−3 for regres-
sion and 2–3 g m−3 for OE. Since the weighting functions of the K band do not show as
clear peaks as in the V band and are even broader, the information content may be too
low for a humidity profile retrieval. Because including channels in the G band impaired
the temperature profile, these frequencies were not used in the retrieval. Perhaps due to
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the strong noise of the G band, as found by Jacob (2020) (see his Fig. 3.5), these channels
were not suited for a simultaneous retrieval of temperature and humidity.
The RMSE of absolute humidity increases towards the surface mainly because the hu-

midity content itself is highest in those altitudes (compare right column of Fig. 13 and
Fig. 14 (b)). Therefore, it is common to display the relative RMSE, normed by the ob-
servation at each altitude. This is not pursued here to compare the retrieval performance
to the findings of Mech et al. (2014). At 0–3000m, the relative RMSE is 10–30% for the
regression and 20–30% for OE. As for the temperature profile, inversions or layers, where
the humidity changes drastically with altitude (e.g. top of planetary boundary layer), are
smoothed (see Fig. 14 (b)). Because of offsets between the true and retrieved surface
humidity via OE, the inversion error increase is shifted. Generally, the overlap of the
dropsonde and regression surface humidity displayed in Fig. 14 (b) (left column) could
not be reproduced as well with OE (right column).
Comparing the aforementioned standard deviation of temperature and humidity (4–6K

for temperature and 2–3 g m−3 for low-level humidity) with the retrieval errors, it can be
seen that the microwave observations add more temperature than humidity information.
If the retrieval error was similar to the standard deviation, the retrieval would not add any
information. Both temperature and humidity retrievals are nearly unbiased with respect
to the dropsonde measurements. The most significant bias over all altitudes (-0.1K) is
found in the temperature retrieval of regression.
Another way to validate the OE retrieval is to compare the forward modelled best

estimate atmospheric state (henceforth referred to as retrieved TBs) with the HAMP
TBs. This can directly be applied to all considered HAMP measurements between the
first and last considered sonde launch. This results in a total number of ≈ 19250 cases,
of which 96.77% converged and 92.87 % passed the χ2 test. Most non-coverged cases
occur before HALO arrives at the AR (12:23–13:30 UTC, not shown). This behaviour is
not investigated in detail but it is suspected that it originates from improper prior data,
which rather focusses on the AR event itself despite having variance beyond (see section
3.3.1). Other non-converged cases coincide with heavy precipitation detected by the radar
(> 20 dBZ). Surprisingly, numerous cases during a nearly clear sky period between 15 and
16 UTC did not pass the χ2 test. As shown later, after presenting the fit of the retrieved
with the observed TBs, this may be caused by an imperfect cloud detection algorithm.
The Root Mean Square Deviation (RMSD) between the retrieved and observed TBs

is smaller than 0.8K for the channels used in the retrieval and 1.0–4.8K for the rest
(see Fig. 15 (a)). This result suggests that either the offsets of other channels than the
V band could be wrong or the true atmospheric state is not found. Perhaps the erro-
neous humidity profile is partly responsible for this outcome since frequencies greater
than 90GHz have significant contribution from water vapour continuum absorption. The
mean (and standard deviation) of the difference between the retrieved and observed TBs
is smaller than (±)0.5K for the used frequencies (see Fig. 15 (b)), suggesting an almost
negligible bias. The excluded K band channel (31.4GHz) shows a similarly small mean
difference but a standard deviation of ±1K. The W and F band appear to be positively
biased of up to 4K and the opaque G band has got a negative bias of -2K. The biases
may be the result of missing emission from clouds, perhaps due to the exclusion of rain
water path or false cloud boundaries, or wrong offsets since only those in the V band were
corrected. Additionally, an error in the RTE model in cloudy situations cannot be fully
excluded, as well. Compared to the used channels, the standard deviation of the W, F
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Figure 14: Measured dropsonde (SO) and retrieved profiles via OE (right column) and regression (RE,
left column) of six launches in the AR core. (a): Temperature profile (T, in K), (b): Absolute humidity
profile (ρv, in kg m−3). The plot is limited to 5500m altitude to increase the visibility of low level
inversions.
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and G band is up to 8 times larger with ±3.9K. The maximum difference between the
retrieved and observed TBs of used channels is less than 10K when considering all cases
and lower than 3K when confining to converged cases, where the χ2 test has passed (see
Fig. 15 (c)). For non-used channels the maximum difference is generally larger (up to
19K) and the reduction is less significant between all and χ2-passed cases. Lack of time
precluded a thorough investigation. As shown in Appendix B (Fig. B.2), the behaviour
of the TB difference for the 19 dropsonde cases is generally similar.

Figure 15: (a): Root Mean Square Deviation (RMSD, in K) between the forward simulated best
estimate of the atmospheric state (retrieved TB: TBret) and observation (observed TB: TBmwr) for all
cases and all frequencies (in GHz). (b): Mean (dot) and standard deviation (error bar) of the difference
TBret−TBmwr. (c): Maximum absolute value of the difference TBret−TBmwr. Arrows indicate the
reduction of the maximum difference when confining to cases where the χ2 test passed compared to
all cases. The lower maximum difference always corresponds to the χ2-passed cases. Red indicates
frequencies that have been used during the retrieval, while those in black were excluded.
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As mentioned before, numerous cases did not pass the χ2 test during a nearly clear
sky period between 15 and 16 UTC. Figure 16 shows the considered excerpt of the RF05
track with radar measurements (a), detected cloud boundaries (b) and retrieved LWP (c).
Generally, the retrieved LWP conincides with the clouds observed by the radar and lidar
well. Even the gradual increase and afterwards decrease of radar reflectivity (from -20
to -6 dBZ and back) between 15:00 and 15:05 UTC is represented in the retrieved LWP
(increasing up to 0.45 kg m−2) using just MWR measurements and cloud boundaries. The
cloud boundaries show clouds in regions where the radar does not detect any backscat-
tering (e.g. between 15:40 and 15:50 UTC). A nadir looking camera onboard HALO
(specMACS) has been checked to confirm that clouds are present in this period. There-
fore, the lidar does provide additional information regarding cloud boundaries compared
to the radar. However, apparently the detection algorithm is still erroneous, forming
elongated, unphysical streaks that may disappear in the next second (e.g. before 15:36
UTC, marked in Fig. 16 (b)).

Figure 16: Excerpt of RF05 from 15 to 16 UTC. (a): Reflectivity (in dBZ) measured by the HAMP
cloud radar. (b): Detected cloudy altitude levels (grey shading) used for the OE retrieval. (c): Retrieved
LWP (in kg m−2).
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It is assumed that the cloud bottom detection algorithm causes these streaks, origi-
nating from conditions where the lidar detected a signal below the cloud in one case but
not in the subsequent time step. In the latter case, the cloud bottom height is fixed
to 90m below cloud top height while in the other case the bottom height is set to the
altitude where the lidar signal comes from. This seems mainly problematic when shallow
clouds, that are not detected by the radar, are present. For future improvements, it may
be advisable to consider a moving average of ±10 s around a time step to detect a mean
cloud top and investigate the average height of a lidar measurement below cloud top to
compute a cloud bottom height. As Fig. B.3 in Appendix B shows, these streaks also
appear in other time steps, e.g. when the radar detected clouds, but rarely cause sudden
peaks of LWP. Additionally, the LWP jumps to zero if only one altitude level in the cloud
detection algorithm (30m vertical resolution) is spotted to be cloudy. Actually, it is not
expected to have cloud heights of merely 30m. As these errors did not occur during the
retrieval development (for the 19 dropsonde launches), they wthey were not spotted and
corrected beforehand.
In preparation of analysing the structure of the AR, it is useful to consider the deviations

between the retrievals, dropsondes and IFS4. Therefore, this is presented as the final part
of the retrieval performance. Except for some outliers caused by non-converged time
steps (cases) or heavy precipitation the RMSD temperature between OE and IFS4 or
interpolated dropsonde is roughly constant over all cases. The humidity deviation varies
substantially between different time steps and shows more distinct and numerous outliers.
The regression is less plagued by outliers for both temperature and humidity over all time
steps. But instead of investigating time series of altitude averaged RMSD, it is simpler
to consider RMSD profiles similar to Fig. 13 because they represent nearly all testcases
and give an overview of the deviation in different altitudes.
The focus shall firstly remain on the left column of Fig. 17, where the RMSD of the

retrieved profiles to the linearly interpolated dropsondes is shown. It can be seen that
the deviation of both retrievals to the dropsonde measurements is similar to the RMSE
in Fig. 13 (left column), as it is expected when both retrieval options perform equally
well. Above 3000m altitude, the OE generally shows less deviation from the dropsonde
measurements (0.6–1.2K vs. 0.7–1.4K, see Fig. 17 (a)). At the surface, the additional
observation of the OE retrieval helps to have the temperature coincide with dropsonde
measurements more closely than the regression (1.1K vs. 2.1K). For temperature, the
RMSD of OE is generally smaller than the square root of the diagonal entries of the a
posteriori error covariance matrix. This is not the case for absolute humidity, suggesting
that the interpolated dropsonde profile is not centered in the best estimate probability
density function. Therefore, it is not surprising that the RMSD between the regression
and dropsonde humidity profiles is lower compared to the OE in most heights (see Fig. 17
(b), left column). Between 1000 and 2000m altitude, where the absolute humidity sharply
reduces with height, the OE appears to be closer to interpolated dropsonde values. This
is merely the result of surface humidity offsets (2–3 kg m−3, or 20%, on average) between
these two. The degrees of freedom of OE for temperature, humidity and LWP are almost
identical to the values mentioned earlier in this section (explicitly: 2.69, 1.78 and 0.82 vs.
2.69, 1.77 and 0.83).
The right column of Fig. 17 shows the RMSD between the retrieved and IFS4 data.

Although the regression has been trained with IFS files of the same and previous day
(see section 3.3.1), suggesting that the RMSD between regression and IFS4 should be
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Figure 17: (a): Root Mean Square Deviation (RMSD) of temperature (T, in K) between regression
(RE, blue), OE (red solid) and dropsonde (SO, left column) and IFS4 (IFS, right column). (b): RMSD
of absolute humidity (in kg m−3) between regression (blue), OE (red solid) and dropsonde (left column),
and IFS4 (right column). Additionally, in each tile the square root of the diagonal entries of the respective
a posteriori error covariance matrix Ŝdiag,T or Ŝdiag,rhov is displayed (red dotted).
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small, the OE deviation is similar. Therefore, since two substantially different retrievals
deviate similarly from the IFS4 data it can be assumed that the training data contained
enough variance for the regression to avoid being overly constrained. The IFS4 data
misses surface values in Fig. 17 because it is intended to compare air temperatures as the
dropsonde originally only measured the air temperature a few meters above the ocean.
The extrapolation of the temperature to the sea surface has not been performed for IFS4
in this application.
The RMSD between the retrievals and IFS4 shows both similar values and structures

as the deviation to the dropsonde data (see left and right column of Fig. 17). When con-
sidering deviations from retrieved profiles to IFS4 data, the temporal shift of the HAMP
MWR measurements to the IFS4 time stamp (16 UTC) must be respected. Because in a
temperature RMSD time series of the retrievals versus IFS4 the minimum deviation lies
between 15:30 and 17:30 UTC (not shown), this assumption may be justified. The tem-
poral shift might explain the slightly increased RMSD for both temperature and humidity
compared to the deviation from dropsonde values.
In this section, it was shown that OE and regression perform similarly well regarding

temperature but differently for absolute humidity retrievals. Concerning OE, it can be
said that at least the square root of diagonal a posteriori error covariance entries are lower
than that of the prior error covariance matrix (see Appendix B, Fig. B.4). According to
Maahn et al. (2020), this means that some information is extracted from the microwave
observations. In conditions with heavy precipitation, which is usually accompanied by a
high hydrometeor load, the OE retrieval failed to converge or pass the χ2 test, causing
error outliers that limit the applicability of this method. Since humidity retrieval with OE
performed worse compared to regression the latter method is mainly used when analysing
the moisture structure of the AR in the subsequent section. It has been shown in Fig.
13 and 14 (b) that the regression is able to capture surface values and coarse vertical
structures, coinciding with the dropsonde measurements. However, both retrieval options
can be applied regarding the investigation of the temperature structure of the AR.

4.2 Atmospheric River Structure

This section begins with a more thorough presentation of the AR event, giving an overview
of the flight path and synoptic features. On this basis, regions of interest are picked to
investigate the AR structure with the data sets at hand. The results are briefly compared
to the findings of earlier studies about AR structures.
As illustrated in Fig. 18, HALO started from Kevlavík International Airport (BIKF)

in south western Iceland at 11:32 UTC. The first dropsonde was launched at 12:23 UTC
(≈ 60◦N) when HALO headed directly southwards in the cold sector of ex-tropical storm
Karl. This marks the start of the considered cases of the retrievals (solid part of the RF05
track in Fig. 18). As HALO continues southwards the IWV increases from 10 to 40 kg m−2

(see Fig. 18 (a)). The filamentary structure of the high IWV content is typical for an AR.
It lies in the WCB of cyclone Walpurga, leading to cyclogenesis due to latent heat release
over the subsequent days. HALO flew right through the WCB of Walpurga, sampling the
core of the AR. It coincides with IVT greater than 1000 kg m−1 s−1, suggesting a strong
AR event (Fig. 18 (b)). The strong moisture transport is elongated north-eastwards
because of the dynamic flow related to ex-tropical storm Karl, which helped to form
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Figure 18: Overview of the AR event of the 27th September 2016 at 16 UTC (data from IFS4 and
BAHAMAS). Both map plots indicate the Sea Level Pressure (SLP, in hPa) as black contour lines, the
positions of the cyclones Walpurga (W) and Karl (K) (red label) and the RF05 track as red solid (red
dash-dotted) line for the time steps included (excluded) in the retrievals. Kevlavík airport is marked as
BIKF. Additionally displayed: (a): IWV (in kg m−2, filled contours), main precipitation fields (rain +
snow water path ≥ 1 kg m−2, blue contours) and radar reflectivity > 15 dBZ (blue dots). (b): IVT vector
and absolute values (in kg m−1 s−1) as quivers and filled contours, respectively.
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the AR in conjunction with the anticyclone still located to the west of the Spanish and
Portugese coast. The width of this AR can only be determined with IFS data because
HALO missed the southern border of the AR. As suggested by Ralph et al. (2017b), the
width of subtropical ARs should rather be determined with IVT thresholds due to the
high IWV values in subtropical regions concealing the southern AR boundary. Using an
IVT threshold of 250 kg m−1 s−2, the width of this AR is approximately 1150 km at the
region of peak IVT (42◦N).
The major strong precipitation fields, where the rain plus snow water path exceeds

1 kg m−2, are also displayed in Fig. 18 (a). As expected, a large fraction of strong
precipitation in the domain is superposed with the AR. The southernmost parts of the
HALO flight track, to the south of 54◦N (13:30–17:45 UTC), cover the AR. The highest
IWV denoted by IFS4 coincides with reflectivities greater than 15 dBZ, as measured by
the HAMP cloud radar. Before 17:45 UTC, 19 dropsondes were launched, 15 of them from
14:10 UTC onwards with a temporal spacing of about 10–20 minutes. With an average
velocity of 200m s−1 this results in a horizontal resolution of 120–240 km. Therefore, the
microwave observations theoretically offer 600 to 1200 times higher horizontal resolution.
But as it will be shown, a moving average over 50–100 microwave observations is sufficient
and recommended to eliminate noise.
To analyse the airmass changes when entering the AR without interference of the di-

urnal cycle, the EPT θe is considered at 850 hPa (see Eq. (7)). Before HALO entered
the AR, it flew through maritime subpolar air in the cold sector of ex-tropical storm Karl
with θe between 295 and 303K (see Fig. 19, 12:23–13:30 UTC). The regression appears to
underestimate the EPT because the other methods agree within ±(1–2)K. The negative
bias is, on average, 6–8K and may exceed 10K when EPT changes rapidly. On the one
hand, it is surprising to see the OE coincide better with the NWP model and the drop-
sonde measurements although it performed worse than regression regarding the humidity
profile. On the other hand it seems unlikely that three rather independent methods (OE,
dropsonde and IFS4) agree on positively biased EPT values. An explanation for this
behaviour is that the regression shows increased RMSE towards dropsonde measurements
(see right column of Fig. 13) at the 850 hPa level (≈ 1500m) due to rapidly decreasing
humidity values and inversions. OE may not capture the surface humidity as well as the
regression but, in exchange, averages humidity over the inversion. Similarly, the regres-
sion shows high RMSD at 1500m with respect to linearly interpolated dropsondes and
IFS4 (see Fig. 17 (b)).
When entering the AR the EPT values rapidly increase to 330–340K (13:30–15:00

UTC), suggesting the presence of a maritime tropical airmass (Geb 1981). Since no
dropsondes have been launched between 13:00 and 14:10 UTC, the horizontal gradient
of EPT is significantly smoothed compared to the other methods. Hence, the linearly
interpolated dropsonde measurements deviate from IFS4 and OE (regression) up to 10K
(20K). All methods denote an increase of EPT in two steps: 13:30–14:10 UTC, then 14:30–
15:00 UTC. This is due to warm and moist air being circled around cyclone Walpurga so
that high EPT values are found to the north of the AR (see Fig. 20). The dropsonde
and IFS4 EPT values even decline by 7–10K. This is a feature that is not shown as
distinct in the retrieval methods (14:00–14:30 UTC in Fig. 19). From 14:30 to 15:00
UTC, all options agree on sharply rising EPT when entering the AR. Simultaneously,
the HAMP cloud radar frequently measures reflectivities greater than 15 dBZ, indicating
regions with precipitation. It is expected to see a significant decline in OE EPT because

54



Figure 19: Time series between the first and second to last dropsonde launch (black triangles) of
equivalent potential temperature (θe, in K) at the 850 hPa level. Data is used from IFS4 (black solid),
linearly interpolated dropsondes (black dotted), OE (red) and regression (blue). Additionally, the time
steps when the radar reflectivity exceeds 15 dBZ (red crosses) are marked.

of ice particles in the top part of the cloud. However, because frequencies sensitive to
scattering have been avoided, the decline is almost not visible. Furthermore, to filter out
noisy fluctuations, a moving average over 100 measurements has been applied to both
retrieval methods. The full resolution is displayed in Fig. C.1 in Appendix C.
While HALO stays within the AR boundaries, the EPT is greater than 325K. As it

can be seen in Fig. 20, the southernmost part of the flight track nearly reaches into a
maritime subtropical airmass (315–325K). All data sets, except for the dropsonde, agree
within ±2K between 15:15 and 16:00 UTC (Fig. 19). In this time span, thin stratocumuli
covered the Atlantic Ocean and even short clear sky periods can be found. Because of
the moving average, the time steps when OE failed the χ2 test during this period are
smoothed out. From 15:30 to 16:00 UTC, HALO returns to the core of the AR, which
can be recognised from the steady increase of EPT (see Fig. 19). During the rainy
period between 16:00 and 16:30 UTC the regression shows a distinct reduction of EPT.
This coincides with a reduction of TBs in F and G band window channels of up to 20K,
caused by scattering (not shown). The EPT remains greater than 325K until HALO exits
the AR at about 17:30 UTC (53◦N, 16◦W). IFS4 suggests the most rapid decrease from
340 to 302K, while the dropsonde measurements denote the least intense decline (338 to
328K). The retrievals lie in between with a decrease from 335 to 315K (see Fig. 19).
The main region of interest is the entry of HALO into the AR from 13:21–15:17 UTC

(55–45.5◦N, 29◦W) because this allows to create nearly a full cross section of the AR.
Unfortunately, an entire cross section is not possible because the southern boundary of
the AR was barely sampled by HALO. Due to another turn of HALO, the part of the
flight when the AR is exited (17:10–17:44 UTC; 50–54◦N, 17–15◦W) is not ideal for an
investigation of the airmass structure. The remaining flight track along the Irish and
Scottish west coast is not regarded because low IWV values imply the absence of AR
conditions. Additionally, just one dropsonde was launched during this part of the flight,
inhibiting a fair comparison between dropsonde measurements and retrievals. Hence, the
focus lies on the entry region to examine the vertical structure of this AR.
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Figure 20: Overview of the AR event of the 27th September 2016 at 16 UTC containing Sea Level
Pressure (black contours) and 850 hPa equivalent potential temperature (θe, filled contours in K). Addi-
tionally, the positions of cyclone Walpurga (W) and ex-tropical storm Karl (K) are marked. The RF05
track is displayed as a red line.

A vertical cross section of EPT is illustrated in Fig. 21 for all data sets. Since only
four dropsondes have been launched in the entry region, the cold air dome to the north
of 51◦N in 0–4000m altitude is blurred compared to the other data sets. Therefore, the
polar cold front (blue lines in Fig. 21) at the edge of maritime tropical airmass1 cannot
be located as easily. When considering that the IFS4 EPT is close to the truth, the
regression underestimates temperature and moisture. OE matches more closely altough
the cold air dome is less distinct. In the IFS4 data, the warm and moist air circled around
the centre of cyclone Walpurga is most prominent (Fig. 21 (c)). The regression is the only
method where a warm and moist airmass at 50.8◦N near the surface is not present. The
anomalous EPT values at 51.3◦N, which are caused by liquid and frozen hydrometeors
with a radar reflectivity exceeding 15 dBZ, do not correspond to the mentioned warm and
moist airmass. Since the aforementioned retrieval artifact is not visible in the OE, this
method performed better in that case because it excludes channels that are sensitive to
scattering by ice particles. IFS4 denotes another cold front at the edge of the maritime
warmed polar airmass2 above the first one (55◦N, 6500m until 48◦N, 500m), which can

1Maritime tropical airmass: θe ≈ 322 K (Geb 1981)
2Maritime warmed polar airmass: θe ≈ 308 K (Geb 1981)
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Figure 21: AR cross section of equivalent potential temperature (θe, in K, filled contours) in the entry
region using different data sets: (a): Regression, (b): OE, (c): IFS4, (d): Linearly interpolated dropsonde.
Additionally, regions with radar reflectivity exceeding 15 dBZ (blue crosses), dropsonde launches (white
triangles), cold front positions (blue lines) and cyclone Walpurga (W) are marked.
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also be seen in the other data sets (comparing Fig. 21 (c) with (a), (b) and (d)). The
second cold front is more pronounced in the regression than in OE because humidity
inversions could not be resolved by OE.
Each data set shows the begin of the AR at approximately 48.5◦N, although the transi-

tion looks blurred in the dropsonde measurements (Fig. 21). An increase in EPT by more
than 10K is especially distinct between 0 and 3000m altitude. All methods, except for
the dropsonde, agree that the highest EPT over all altitudes is located at approximately
47.75◦N, which coincides with the maximum IWV, as it will be pointed out later in this
section. Since winds between the surface and 3000m are stronger at 46.5◦N, the maxi-
mum water vapour transport occurs to the south of the maximum IWV region (shown
in Appendix C, Fig. C.2). This region of maximum water vapour transport coincides
with the highest EPT in low altitudes (0–2000m). Therefore, the position of the AR core
(46–47◦N, 0–2000m) is conform over all data sets. At 47–45.5◦N EPT decreases from
340K close to the surface to 320K in 4000m altitude. Hence, the vertical gradient of
EPT is negative, indicating a potentially unstable layer. This means that the layer will
become unstable upon lifting (Trapp 2013, pp. 127-131), supporting cloud formation and
latent heat release.

Figure 22: IWV (in kg m−2) for different latitudes in the entry region of the AR. Data is used from
IFS4 (black solid), linearly interpolated dropsondes (black dotted), OE cases when χ2 test was passed
(red) and regression (blue). Additionally, the regions of the dropsonde launches (black triangles) and
failed χ2 tests (red crosses) are marked.

Before the humidity structure is analysed, the change of IWV in the entry region is
presented (see Fig. 22). The IWV has been computed via Eq. (9) from the retrieved,
modelled and measured absolute humidity, respectively. Since the noise of the retrieval
methods for IWV is weaker compared to the 850 hPa EPT, the full resolution is used. A
distinct outlier of the regression occurrs at approximately 51.4◦N due to precipitation and
ice particles. Generally, OE appears to overestimate the IWV with respect to regression.
However, it may be that regression underestimates the IWV until AR conditions are met,
similarly to the underestimation of EPT outside the AR. To the north of the AR (54–
55◦N), all data sets, except for the linearly interpolated dropsonde, exhibit IWV values of
10–15 kg m−2, which is typical for a subpolar airmass. Lack of dropsonde launches in the
entry region leads to an overestimation of IWV when linear interpolation is applied. As
for the EPT, the increase of IWV can be divided into two parts, explicitly 54–52◦N and
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49–47.5◦N. The first part is related to the warm and moist airmass circled around cyclone
Walpurga and an increase of high altitude moisture. IFS4 data seems to be shifted with
respect to the retrievals. This is probably due to the temporal offset (16 UTC for IFS4
and 13:45 UTC for HAMP). From 52 to 49◦N, the typical gradual increase of the overall
moisture content with lower latitudes is visible. In this region, all methods agree within
±3 kg m−2. The IWV is clearly influenced by the AR to the south of 49◦N, where a sharp
increase by ≥ 10 kg m−2 is denoted by the retrievals. As expected, the dropsonde data
cannot capture the sharpness of the rising IWV values. IFS4 shows a less pronounced
increase by merely 7 kg m−2. Since the maximum IWV of IFS4 and the retrievals coincide
at approximately 47.75◦N, the maximum IWV may have been missed by the dropsondes.
It is likely that a dropsonde launched at 47.75◦N would have measured a greater IWV
because three methods suggest a further increase to the south of 48.25◦N. The magnitude
of the maximum IWV varies between the different data sets. While IFS4, dropsonde and
regression agree on 40–42 kg m−2, OE appears to be the outlier with 49 kg m−2.
As mentioned before, the maximum IWV coincides with the region where the overall

highest EPT in all altitudes is found. It is not a surprising result but the one variable
includes temperature and humidity information while the other is confined to absolute
humidity only. Therefore, this may be considered as a consistency check. The slight
decrease of IWV from 42 kg m−2 (at 47.75) to 36 kg m−2 (at 45.5◦N) is also conform to
the reduced EPT between 2000 and 6000m. OE still seems to overestimate the IWV
compared to the other data sets but to a lower extent (2–4 kg m−2).
For the analysis of the humidity structure of the AR, the absolute humidity is converted

to specific humidity (q = ρv/ρ; ρ: total air density) to keep features in high altitudes
better resolved. OE is excluded in this part because it basically does not show remarkable
vertical structures (see Appendix C, Fig. C.3). To the north of the AR (55◦N), IFS4 and
regression denote similar humidity values in the planetary boundary layer (6–4 g kg−1 in 0–
1000m) (see Fig. 23 (a) and (b)). The linearly interpolated dropsonde data overestimates
the height of the boundary layer because of missing launches in that region. Therefore,
in 2000m altitude the dropsonde suggests 4.5 g kg−1 while IFS4 and regression exhibit
less than 1 g kg−1. Another moist layer can be identified via regression and IFS4 in
4000–5000m altitude. This layer is more pronounced in IFS4 as a result of moist air
circled around Walpurga. A slanted layer of up to 10 g kg−1 reaches from the surface
at 50.5◦N to 5000m altitude at 55◦N (see Fig. 23 (b)). While this feature cannot be
seen at all in the dropsonde data, the regression indicates a humidity inversion in 2000–
3000m altitude at 51.5–52.5◦N that may be associated to that shown by IFS4. Above
and alongside this humid layer, IFS4 denotes a dry layer from 49◦N at 1000m to 52◦N at
3500m. Compared to the humid layer the specific humidity decreased by 5 g kg−1. The
dry layer is also represented in the regression. It ranges from 48.5 to 51◦N at 1000–3000m
altitude. The dry layer can even be recognised in the dropsonde data at 49.8◦N between
1000 and 2000m altitude. It appears narrow compared to the other data sets because
the adjacent dropsondes (> 100 km distance) were launched in more humid conditions.
IFS4 and regression agree that high humidity content is located above this dry layer
(3000–5000m). This corresponds to the cold fronts marked in Fig. 21 where the less
dense warm and moist air lies above cold and dry air. Specific humidity increases from
1.5 g kg−1 (4 g kg−1) to 6 g kg−1 (5.5 g kg−1) according to regression (IFS4). A humidity
inversion is less distinct in the dropsonde data but also present at 4000m altitude and
49.8◦N.
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Figure 23: AR cross section of specific humidity (in kg kg−1, filled contours) in the entry region using
different data sets: (a): Regression, (b): IFS4, (c): Linearly interpolated dropsonde. Regions with
radar reflectivity exceeding 15 dBZ (red cross) and in (c) positions of sonde launches (black triangles) are
displayed. Black dashed lines mark the AR.

When HALO enters the AR, all data sets indicate a specific humidity of 6 g kg−1 up
to an altitude of 4000m. Despite rainy conditions that could degrade the retrieval, even
the vertical distribution of humidity looks similar over all data sets at 47–48.5◦N. Each
displayed method agrees with the findings of Ralph et al. (2004, 2017b) that inside the
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AR 5 g kg−1 can be found up to 4000m altitude. The same specific humidity is confined
to the lowest 1000m to the north of the AR (see Fig. 23 (a) and (b) and Fig. 3 (b)).
Furthermore, inside the AR 1 g kg−1 is located at 8000m altitude while the same dryness
is reached at 2000m altitude to the north. Even the slanted structure of the AR (marked
in Fig. 23), outlining the maximum water vapour transport according to IFS4, is seen
in the humidity cross section. This is also conform to the findings of Ralph et al. (2004,
2017b).
As already indicated by IWV the humidity at 4000m reduces to the south of 47.5◦N.

The decrease of moisture in heights above 3000m is denoted more pronounced in IFS4
and regression than in the dropsonde data. The reduction of upper-level moisture (4000–
7000m) to the south of AR is also seen in Ralph et al. (2004). In 4000m altitude the
specific humidity is reduced by 2.5 g kg−1 over a distance of 1.5◦ (≈ 160 km) under re-
gression and 1 g kg−1 under dropsonde measurements. Above the planetary boundary
layer, the specific humidity of all data sets is similar (47–45.5◦N, 1500–9000m). Close to
the surface, regression seems to overestimate the humidity content by 2 g kg−1 compared
to dropsonde and IFS4. When neglecting this offset, a clear resemblance of the vertical
structure between regression and IFS4 can be seen for the entire entry region. At the
locations of dropsonde launches all three data sets show similar vertical humidity profiles
(see Fig. 24). Unfortunately, merely four dropsondes were launched in the entry region.
It is remarkable how similar the profiles of IFS4 match the dropsonde measurements. For
example, the heights of sharp moisture gradients in the lowest 2000m for the launches
at 49.89 and 51.15◦N are nearly identical. Naturally, the regression cannot compete with
the vertical resolution of the other methods but it also exhibits strong vertical moisture
gradients, albeit in different altitudes and smoothed. When entering the AR, the increase
of moisture in 0–3000m altitude with decreasing latitude (51.15–46.69◦N) is similar in all
three data sets.

Figure 24: Specific humidity (q, in kg kg−1) for regression (a), IFS4 (b) and dropsonde (c). The different
dropsonde locations are shown in different colours.
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In the exit region (17:10–17:44 UTC; 50–54◦N, 17–15◦W, not shown) the typical AR
structure is less distinct because HALO did not fly perpendicular to its length axis.
Nevertheless, the slanted structure can be recognised in the IFS4, dropsonde and regres-
sion humidity cross section. A moisture inversion, with specific humidity values firstly
decreasing and subsequently increasing by 7 g kg−1 with altitude (according to IFS4 and
dropsonde), has also been detected by regression, albeit smoothed to 1.5 g kg−1.

4.3 Benefit of Microwave Remote Sensing

In this part the benefit of microwave observations for sampling the structure of an AR
is assessed qualitatively and quantitatively, based on results that have already been pre-
sented earlier in this chapter. It is assessed whether structures can be seen that are
obscured due to the coarse horizontal resolution of the dropsonde measurements. A com-
parison of the retrieval RMSE to the variance of the reference data (IFS4 and dropsondes)
itself, allows to estimate the gain of information by the retrieval (as proceeded by Solheim
et al. (1998) or Mech et al. (2014)).
Since the strength of an AR is strongly related to the IWV, it is critical to measure it

as precisely as possible. Therefore, dropsonde measurements, having a coarse horizontal
resolution, may not be favourable to determine the maximum IWV. It would be required
to launch dropsondes with a temporal spacing of 3–5 instead of 10–20 minutes. Instead,
the microwave observations can be used to estimate the maximum IWV supported by
a few dropsondes to validate the retrieval. If the AR structure is only analysed with
dropsondes, the horizontal gradients of moisture and EPT are strongly smoothed. It
has been shown in Fig. 19 and 22 that in the entry region the dropsondes showed the
largest offsets compared to the other methods for both variables. The width of the AR,
often determined by a threshold of IWV or IVT, can not be computed via dropsonde or
retrieved data because the southern end of the AR may be missed and wind data is only
available from IFS4 and dropsonde data. However, it can be assumed that the width with
respect to a IWV threshold could be more accurately identified with the retrieved data
from airborne microwave observations because of the higher horizontal resolution.
The warm air, that is circled around Walpurga, is barely visible in the dropsonde data

because only two dropsonde were launched around this cyclone. Since this feature is con-
fined to lower altitudes, it is also only barely observed in the retrieved data (more clearly
in OE than in regression). The slanted structure of the cold fronts is better represented
in the retrieved EPT (especially regression). The fronts are more difficult to locate in the
dropsonde EPT as the horizontal gradients are blurred. In the southern part of the AR
entry region, dropsondes were launched with less temporal spacing (approximately 15–20
minutes). Therefore, the maximum IWV (and overall high EPT in all altitudes) could be
approximately located. However, it must be assumed that the dropsondes underestimated
the peak IWV of this AR. The reduction of EPT to the south of the peak IWV region in
3000–6000m altitude is less sharp in the dropsonde data, suggesting an excessively wide
column with high EPT.
Similar structural differences are observed regarding the specific humidity cross section.

The dry layer above the boundary layer at 53–55◦N and the following increase in low level
moisture close to Walpurga are not visible in the dropsonde humidity cross section. Fur-
thermore, the tilt of the AR, as seen in Ralph et al. (2004, 2017b) could only be identified
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in the regression and IFS4 data (supported by water vapour transport computation to
locate the core). The reduction of moisture above 3000m, which is also exhibited in
Ralph et al. (2004), is slightly less pronounced in the dropsonde compared to the IFS4
and regression humidity cross section.
Generally, the features discussed in section 4.2 were obtained with a moving average of

100 measurements applied to the retrieval data. Most structures can also be seen when
the moving average length is set to 150 measurements. With the mean flight velocity
of 200m s−1, this results in a horizontal resolution of 20–30 km. Hence, considering a
dropsonde spacing of 120–240 km, the MWR provides an effective horizontal resolution
4–12 times finer compared to the dropsondes.
The MWRs onboard polar orbiting satellites denote a horizontal resolution similar

to the HAMP measurements with a moving average over 100-150 time steps. Therefore,
structures in a cross section of an AR could be resolved similarly. However, due to greater
RMSE compared to HAMP MWR observations (Mech et al. 2014), the structures may
not be seen as clearly as with airborne MWRs. Additionally, if an OE retrieval is chosen,
high uncertainties in cloudy regions (especially with ice) must be expected. Because the
footprint of a satellite microwave sounder is approximately 15–50 km, it will be difficult to
find cloudfree conditions inside an AR. Adding information about the cloud boundaries
may help to eliminate errors as mentioned in this thesis. A great advantage of HAMP
is that it provided radar, lidar and MWR measurements simultaneously. Therefore, it
is simple to include additional information regarding cloud boundaries in the retrieval
without having to worry about the overlap. A statistical retrieval may be more favourable
to observe AR structures from satellite microwave measurements because its temperature
and humidity retrievals proved to be less affected by cloudy or precipitating conditions.
To point out the general information gain by the retrievals, it is common to compare

the standard deviation of a climatology to the retrieval RMSE. If the standard deviation
of the climatology equals the RMSE of the retrieval, no information is added by the ob-
servations. For example, around the mean dropsonde temperature profile with a spread
of the standard deviation it can be expected to find one of the measured dropsonde pro-
files with a probability of approximately 68%. Since the dropsonde measurements and
IFS1+2+3+5 data serve as reference climatology in this case, their standard deviations
are used. Both reference data sets do not truly represent a climatology because they cover
merely one AR event. The square root of the diagonal prior covariance entries equals the
standard deviation of the training data. Regarding temperature, both retrievals provide
enough information, so that the RMSE is 0.5–2K compared to a dropsonde standard de-
viation of 4–6K. This corresponds to a reduction by a factor of 2–10 so that the RMSE of
temperature relative to the dropsonde standard deviation is 10–40% in most height levels
(see Fig. 25 (a)). The ratio between RMSE and the standard deviation of the training
data is similar. In the middle troposphere, the RMSD is less than 20% of the standard
deviation over a wider altitude range (4000-7000m) (see Fig. 25 (c)). Regarding absolute
humidity, the information gain by the microwave observations is not as significant com-
pared to temperature (see Fig. 25 (b), (d)). The regression RMSE of absolute humidity
almost equals the dropsonde standard deviation (> 80 %) at the altitude of strong verti-
cal humidity gradients (1500-2000m) and close to the aircraft where absolute humidity is
nearly zero. At the surface, the utilised microwave observations barely added information
to the OE retrieval with respect to the reference. Above 3500m altitude, the observations
provide more to the regression than to OE, leading to a relative RMSE compared to the
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dropsonde standard deviation of 30–40%. This is probably due to the number of addi-
tional channels involved in the estimation of the regression coefficients. Perhaps the role of
scattering by ice particles contributed to a lack of information gain below 3500m altitude
despite the additional channels used in the regression. The information provided by high
frequency window channels is scattered away from the observation direction. This as-
sumption is fortified when considering that the freezing level over all considered cases lies
between 3500 and 4500m. Additionally, sharp humidity gradients in the lowest 3000m
cause large errors. When comparing the humidity RMSE of regression with the train-
ing data standard deviation, this climatology suggests similar information content by the
microwave observations. However, when using the training data as reference, OE seems to
extract less information from the observations in 4000–8000m altitude. This is certainly
due to a reduced standard deviation of the training data compared to the dropsondes
because a similar increase can be observed for the regression.
The comparably low gain of information for a humidity retrieval could be explained

by the fact that the reference consists of merely one AR event leading to a confined
standard deviation. Another reason may be the presence of strong moisture gradients
and inversions that are generally smoothed out by the retrievals, resulting in large errors.
Regarding temperature, the used microwave observations provide enough information to
ensure temperature profiles to deviate, on average, less than 2K from the truth.

Figure 25: (a): Temperature RMSE profile of OE (red) and regression (RE, blue) divided by the
standard deviation of the first 19 dropsondes σSO,T (in %). (b): Same as (a) but for absolute humidity.
(c): Temperature RMSE profile of OE and regression divided by the standard deviation of the training
data set σIFS,T (in %). (d): Same as (c) but for absolute humidity.
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5 Conclusions and Outlook

The goal of this thesis was to analyse the benefit of microwave remote sensing to in-
vestigate the thermodynamic structure of ARs. A research flight of HALO during the
NAWDEX campaign provided nearly optimal conditions for this examination as an AR
event was sampled with both microwave observations and dropsondes. Two substantially
different retrieval algorithms for temperature and humidity profiles have been developed
and validated to investigate the AR. Regression has been trained and tested with a nu-
merical model (IFS), where TBs (simulated via PAMTRA) served as virtual MWR mea-
surements. The OE used the training data of regression as prior knowledge to constrain
the best estimate atmospheric state. The errors of both retrievals have subsequently been
quantified with HAMP MWR measurements around dropsonde launches as reference. In
OE the LWP was additionally retrieved because it reduced the errors in cloudy situations,
allowing the retrieval to adapt the cloud liquid water. For this, cloud boundaries detected
by the lidar and cloud radar onboard HALO were included.
The RMSE of temperature lies below 2K in all altitudes and is similar for both re-

trievals. Above the planetary boundary layer, the error is even lower, ranging from 0.5 to
1.5K. The retrievals differ regarding RMSE of absolute humidity, but agree that the error
is generally higher compared to temperature. Regression denotes errors of 1–1.5 g m−3 in
the lowest 1000m while OE exceeds 2 g m−3. Strong vertical moisture gradients cause the
highest errors of both retrievals but in different altitudes. Regression shows the maxi-
mum error right at the strong vertical moisture gradient altitude, while OE averages the
humidity below and above it, often combined with an offset at the surface. The relative
RMSE of absolute humidity increases with altitude due to decreasing moisture content.
For regression, it is 30% at 3000m and 70% at 9000m altitude. OE denotes greater
humidity RMSEs compared to regression and is not able to resolve vertical structures.
The EPT structure, exhibited by IFS4 in the region when HALO entered the AR,

generally resembles what is seen by dropsonde measurements. Disregarding differences
of surface values and a negative bias of the regression in the cold sector to the north
of the AR, the structures shown by both retrievals are strikingly similar to those of
IFS4. Vertical gradients are, as expected, smoothed out slightly but the features remain
visible nonetheless. Strong horizontal gradients across the polar cold front at the northern
boundary of the AR are blurred in the dropsonde data. The retrieved IWV coincides
with values computed from dropsonde and IFS4 data within ±2.5 kg m−2 in most cases.
Inside the AR, OE overestimates the moisture content as a result of a non-ideal humidity
retrieval. Therefore, the humidity structure is analysed with IFS4, linearly interpolated
dropsondes and regression only.
Despite the low vertical resolution of microwave profiling and precipitation — measured

by the cloud radar — significant moisture inversions are resolved. The tilt of the AR,
suggested by earlier studies and also seen in IFS4, can also be recognised in the regres-
sion. Apart from a positive deviation of 2 g kg−1, the moisture content in all altitudes is
comparable between the data sets. In the dropsonde measurements, the tilt is just barely
visible due to the coarse horizontal resolution of approximately 160 km in the AR entry
region. Hence, the microwave observations did indeed help to improve the horizontal
resolution because features that are blurred or even not detected by dropsondes have
been revealed. Effectively, the horizontal resolution has been improved by a factor of
4–12 (from 120–240 km to 20–30 km).
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Unfortunately, because HALO did not sample the southern boundary of the AR, a full
cross section, as seen in earlier studies, was not possible. Additionally, dropsonde launches
were not optimised for an AR cross section but rather to investigate the moisture inside
the core and downstream of it. Consequently, merely four dropsondes were launched in
the entry region of the AR. However, in this case, it resulted in an even greater benefit of
microwave remote sensing because the lack of dropsondes could be replaced by retrieved
profiles. In future campaigns, dropsondes will still be necessary because the vertical
resolution cannot be matched by retrievals from microwave observations. Furthermore,
they are required for validation of such retrievals — especially in regions with heavy
precipitation — and to identify offsets in microwave measurements. Nevertheless, it is
fairly possible to show AR structures from microwave observations only, resembling those
found by Ralph et al. (2004, 2017b). Horizontal gradients can be seen sharper compared
to dropsonde measurements spaced approximately 150 km apart.
As an outlook on future work that can and partly will be done, it is firstly important

to eliminate the errors spotted in the OE retrieval development. The handling of the
lidar measurements in the cloud detection algorithm and the falsely upscaled off-diagonal
entries in the observation covariance matrix must be corrected. Furthermore the OE
humidity retrieval requires revision and more time for improvements. The K band ap-
parently did not provide sufficient information to resolve humidity structures. It may be
possible to include radar measurements as observations to derive ice, snow, rain or cloud
liquid water profiles as suggested by Ebell et al. (2017). Then the retrieval has more
options to adapt the atmospheric state to find a solution closer to the truth. When the
ice concentration is specified for PAMTRA, it is possible to include channels sensitive to
scattering, such as the G band. Additionally, if a brightband — a region of enhanced radar
reflectivity a few 10 meters below freezing level — is visible, it could be used to estimate
the freezing level. The dropsonde profiles have not been used as a first guess because the
retrieved profile was almost identical to the dropsonde measurement but with a shift of
e.g. 1K in the upper troposphere. A detailed look into this may reveal the possibility to
use OE as a support for linear dropsonde interpolation. The regression should be tested
on another AR event to verify the independence of the training data of this specific event.
With more data the regression can be trained on multiple AR events to increase robust-
ness. For this, either simulated MWR observations or HAMP measurements of more ARs
would be desired.
Regarding AR monitoring, it would be interesting to test the retrievals on measurements

from satellite-based microwave sounders. Then the retrieved cross section could be com-
pared to the results found with HAMP measurements to quantify the loss of information
due to the higher altitude and consequently the larger footprint.
The experience gained from this thesis may be beneficial to investigate strong moisture

fluxes in the Arctic as part of the AC3 project.
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Appendices

A Retrieval development

This part of the appendix contains information that is useful, though not necessary to
understand the retrieval build.
From section 3.3.1, the cubic regression equation in matrix notation for a temperature

Tj in altitude zj and Ntrain training cases with m Tb measurements is given by


Tj1
Tj2
...

TjNtrain


︸ ︷︷ ︸

Tj

=


1 Tb11 · · · Tb1m T 2

b11 · · · T 2
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T 3
b11 · · · T 3
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T 3
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b2m... ... · · · ... ... · · · ... ... · · · ...
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T 2
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· · · T 2
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T 3
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· · · T 3
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Kreg

·



aj
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...
bjm
cj1
...
cjm
dj1
...
djm


︸ ︷︷ ︸
mestj

+ε. (A.1)

The observation covariance matrix from section 3.3.2, which is used for the retrieval, is
no longer symmetric due to the upscaling. Explicitly, it is written as

Sε =



0.5 0.0049 0.0036 0.0036 0.0025 0.0016 0 0 0 0 0 0 0 0
0.2025 0.5 0.0049 0.0036 0.0036 0.0016 0 0 0 0 0 0 0 0
0.125 0.1701 0.5 0.0036 0.0025 0.0025 0 0 0 0 0 0 0 0

0.1065 0.1065 0.1065 0.5 0.0025 0.0025 0 0 0 0 0 0 0 0
0.0740 0.1065 0.0740 0.0740 0.5 0.0025 0 0 0 0 0 0 0 0
0.0556 0.0556 0.0868 0.0868 0.0868 0.5 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.5 0.0144 0.0196 0.0169 0.0121 0.0144 0.0121 0
0 0 0 0 0 0 0.1633 0.5 0.0144 0.0169 0.0169 0.01 0.01 0
0 0 0 0 0 0 0.1701 0.125 0.5 0.0225 0.01 0.0144 0.0121 0
0 0 0 0 0 0 0.1467 0.1467 0.1953 0.5 0.0064 0.0196 0.0121 0
0 0 0 0 0 0 0.1513 0.2113 0.125 0.08 0.5 0.0144 0.0144 0
0 0 0 0 0 0 0.1488 0.1033 0.1488 0.2025 0.1488 0.5 0.0121 0
0 0 0 0 0 0 0.1676 0.1385 0.1676 0.1676 0.1994 0.1676 0.5 0
0 0 0 0 0 0 0 0 0 0 0 0 0 4.65


.

(A.2)
It has been acknowledged that the upscaling is erroneous because the main diagonal entries
of the MWR part were supposed to be (0.5 K)2 = 0.25 K2 and not 0.5K2. Furthermore,
the upscaling of off-diagonal entries above the main diagonal was not applied because
these values were re-assigned during the next iteration. These errors were spotted too
late and therefore not corrected.
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The correct observation covariance matrix would be

Sε =



0.25 0.0544 0.04 0.04 0.0278 0.0178 0 0 0 0 0 0 0 0
0.1012 0.25 0.1012 0.074 0.074 0.0331 0 0 0 0 0 0 0 0
0.0625 0.0851 0.25 0.0625 0.0434 0.0434 0 0 0 0 0 0 0 0
0.0533 0.0533 0.0533 0.25 0.0370 0.0370 0 0 0 0 0 0 0 0
0.0370 0.0533 0.037 0.037 0.25 0.037 0 0 0 0 0 0 0 0
0.0278 0.0278 0.0434 0.0434 0.0434 0.25 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.25 0.0625 0.0851 0.0734 0.0525 0.0625 0.0525 0
0 0 0 0 0 0 0.0816 0.25 0.0816 0.0958 0.0958 0.0567 0.0567 0
0 0 0 0 0 0 0.0851 0.0625 0.25 0.0977 0.0434 0.0625 0.0525 0
0 0 0 0 0 0 0.0734 0.0734 0.0977 0.25 0.02787 0.0851 0.0525 0
0 0 0 0 0 0 0.0756 0.1056 0.0625 0.04 0.25 0.09 0.09 0
0 0 0 0 0 0 0.0744 0.0517 0.0744 0.1012 0.0744 0.25 0.0625 0
0 0 0 0 0 0 0 0 0 0 0 0 0 4.65


.

(A.3)

The descriptor file, requried for PAMTRA, specifies microphysical parameters of the
hydrometeors. The settings chosen in this thesis are presented in Tables A.1, A.2 and
A.3. An elaborated description of the variables and options can be found in Mech et al.
(2015).

Table A.1: The descriptor file, specifying hydrometeor microphysical information, equals that in
descriptor_file_ecmwf_mie.txt.

hydro_name as_ratio liq_ice rho_ms a_ms b_ms alpha_as beta_as
cwc_q -99.0 1 -99.0 -99.0 -99.0 -99.0 -99.0
iwc_q 1.0 -1 700.0 -99.0 -99.0 -99.0 -99.0
rwc_q -99.0 1 -99.0 -99.0 -99.0 -99.0 -99.0
swc_q 1.0 -1 -99.0 0.069 2.0 -99.0 -99.0

Table A.2: Descriptor file continued from table A.1.

moment_in nbin dist_name p_1 p_2 p_3 p_4 d_1
3 1 mono -99.0 -99.0 -99.0 -99.0 2e-05
3 1 mono -99.0 -99.0 -99.0 -99.0 6e-05
3 50 exp 0.22 2.2 -99.0 -99.0 0.00012
3 50 exp 2e-06 0.0 -99.0 -99.0 2e-04

Table A.3: Descriptor file continued from table A.2.

d_2 scat_name vel_size_mod canting
-99.0 miesphere khvorostyanov01_drops -99.0
-99.0 miesphere heymsfield10_particles -99.0
0.006 miesphere khvorostyanov01_drops -99.0
0.02 miesphere heymsfield10_particles -99.0
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B Retrieval performance

This part of the appendix contains auxiliary figures that support the background infor-
mation given during the retrieval validation in section 4.1.
The subsequent figure shows the standard deviation of temperature and absolute hu-

midity over the first 19 of 20 dropsonde launches during RF05.

Figure B.1: Standard deviation σ of temperature (left, in K) and absolute humidity (right, in kg m−2)
of each height level. The first 19 of 20 dropsonde launches of RF05 are involved.
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An option to validate the OE retrieval is to compare the forward simulated solution with
the observation. Below, the difference between the forward simulated solution (subscript
ret) and the HAMP MWR measurements (subscript mwr) is plotted for 19 dropsonde
launches (0–18). Deviations of more than 1K only occur in frequencies that were not
included in the OE retrieval or in situations with a high hydrometeor load (both liquid
and ice particles).

Figure B.2: Difference between the forward simulated best estimate of the atmospheric state (subscript
ret) and the HAMP MWR measurements (subscript mwr) (in K) for the first 19 dropsonde launches
(starting with index 0). All HAMP MWR frequencies (in GHz) are shown but the ones used in the
retrieval are marked with a red cross.
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In Fig. B.3, the detected cloud levels of the OE retrieval for the entire RF05 between
the first and second to last dropsonde launch are shown (b) next to the retrieved LWP
(c) and measured reflectivity by the HAMP cloud radar (a).

Figure B.3: Time series spanning the entire RF05 between the first and second to last dropsonde launch.
(a): Reflectivity (in dBZ) measured by the HAMP cloud radar. (b): Detected cloudy altitude levels (grey
shading) used for the OE retrieval. (c): Retrieved LWP (in kg m−2).
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To assess how much information the observations add to the OE retrieval, it is useful to
consider the reduction of the square root of diagonal entries of the a posteriori compared to
the a priori error covariance matrix. The square root of these entries equals the standard
deviation because a Gaussian error distribution is considered. This is displayed in the
Fig. B.4.

Figure B.4: Square root of diagonal entries of the a priori and a posteriori error covariance matrices
(Sa,diag,T,ρv

and Ŝdiag,T,ρv
) for temperature (left column, in K) and absolute humidity (right column, in

kg m−3).
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C Atmospheric River Structure

Supplementary figures that may help to illustrate details of the discussion in section 4.2
are presented here.
The full resolution of the retrieval methods causes fluctuations, which can be filtered out

when applying a moving average over 50–100 measurements. Anyway, the full resolution
of the 850 hPa Equivalent Potential Temperature (EPT, θe) is displayed below.

Figure C.1: Full resolution of the time series between the first and second to last dropsonde launch
(black triangles) of equivalent potential temperature (θe, in K) at the 850 hPa level. Data is used from
IFS4 (black solid), linearly interpolated dropsonde (black dotted), OE (red) and regression (blue). The
time steps when OE did not pass the χ2 test are marked (red crosses) and filtered out.
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In the following figure, the wind speed (|v|) and water vapour transport (ρv · |v|) cross
sections in the entry region of the AR are displayed. Because wind measurements are
confined to dropsonde and IFS4 data, the retrieval options must be excluded.

Figure C.2: AR cross section of water vapour transport ((a): Dropsondes and (b): IFS4; in kg m−2 s−1)
and wind speed ((c): Dropsondes and (d): IFS4, in m s−1) in the entry region. Dropsonde launches are
marked as black triangles.
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The OE has been excluded from the humidity structure analysis because it merely
shows the reduction of humidity with altitude without revealing any remarkable features
compared to regression. It does not object the findings in regression but the vertical
resolution is just too low (DOF: 1.78) to analyse the cross section of the AR.

Figure C.3: AR cross section of specific humidity (in kg kg−1, filled contours) in the entry region using
OE. Regions with radar reflectivity exceeding 15 dBZ (red crosses) are marked.
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