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e cold and dry air flows from the central Arctic southward Duri CAOs. dist t det .
* close to seaice over open water, roll convection is triggered in the boundary layer uring S, dIstance over open water determines

* convection forms cloud streets and transforms to cellular convection under extreme atmospheric bou ndary |ayer tra nsformation,
surface heat fluxes and mixed-phase processes - :
formation of cloud streets, their morphology,

e understanding air-mass transformation is crucial for weather and climate models

 however, only few observations of macro- and microphysical cloud properties exist microphysics and precipitation.
especially near the sea ice edge, i.e. the initial state of cloud formation

worldview: Terra/MODIS ,
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2. Data and Methods

« What airborne data from the research aircraft Polar 5 (P5) and HALO
e Where 01.04.2022 during the HALO-(AC)3 campaign (Wendisch et al., 2023; Fig. 1)
* Instruments clouds and precipitation: Microwave Radar/radiometer for Arctic Clouds
(MIRAC; Mech et al., 2019) operating at 94 GHz; thermodynamics: dropsondes
e Method
lagrangian back trajectories over previous 12 hours
input: ERAS5 wind fields
origin: horizontal location of P5 at 1000 hPa height for every minute
model: Lagranto (Sprenger and Wernli, 2015)
convection categories: over sea ice, and cloud streets, advected over land
cloud objects derived from cloud top height
 Parameter integrated distance over open ocean (fetch) that is weighted by AMSR2
sea ice concentration (Melsheimer and Spreen, 2019) as a proxy for the influence of longitude

the open ocean Fig. 1: Cloud conditions on 01.04.2022 (a). P5 flight track (circles), dropsondes (diamonds;
color: HALO; black: P5) and calculated air mass trajectories (black lines; b).
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3. ReSLI |tS ® 15-100 km cloud microphysics
2:0] :;ﬁo km e over seaice Zenmean pPer profile is generally lowest (-20 dBZ; Fig. 5a)

thermodynamic profiles

e suchlow Zeea, Occur even for larger fetches
with increasing fetch, mixing £ 15

e Zemean INCreases with cth: rate is constant within cloud street categories, but even

ratio and wind speed within £ though have higher cth, Zeean distribution is similar (Fig. 5a)
the boundary Iaye.r, and - * normalized vertical Ze,,, position within the cloud (including precipitation) is
boundary layer height . mainly around 0.5 (Fig. 5b)

increase (Fig. 2) * for some non-precipitating clouds Ze,,.y is at cloud top (Fig. 5b)

o for precipitating clouds sublimation is visible (Fig. 5b)
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Fig. 2: Dropsonde profiles of 0.0
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* bimodal distribution of maximum cloud top 2 J T s i - || | 8 200 S
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e cthincreases with fetch, even stronger for S | . ecurences
recipitating clouds (Fig. 4b 2 . . . . . .
P S : gl df (Fig )d ith fetch ol LU LLLELLLLL Eoo = Fig. 5: Cloud top height per profile against mean radar reflectivity (Ze; a). Maximum Ze per
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* aspect ratio of circulation increases with fetch loud ton=1. b —0: b
. . , cloud top=1, bottom=0; b).
(Fig 4c) Fig. 3: Histogram of relative occurrence

for cloud width (a) and maximal cloud

* mean aspect ratio of circulation is 2.1 top height (b) over all cloud objects.

4. Conclusions and outlook

P 100 W c) e analyzed CAOs with airborne radar and dropsonde data

e clear boundary layer evolution with fetch that triggers higher convection, whereas
cloud width stays constant

e marginal sea ice zone influences Ze;ean
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e determination of cloud morphology by Ze
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cloud top height / km

e expand microphysical investigation: effective radius, liquid water path, and

100 . . .
evolution of riming
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Fig. 4: Cloud top height per profile with fetch for non-precipitating (a) and precipitating (b) clouds. Literature
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