Exploitation of high resolution reanalyses concerning renewable energy applications

Christopher Frank^{1,2}, J. Keller^{2,5}, C. Ohlwein^{3,2}, F. Höffler⁴, S. Crewell¹

Publication:

- ¹ Institute of Geophysics and Meteorology, University of Cologne, Germany
- ² Hans-Ertel-Zentrum für Wetterforschung, DWD, Germany; ³ Meteorological Institute, University Bonn, Germany
- ⁴ Institute of Energy Economics, University of Cologne, Germany; ⁵ German Meteorological Service, DWD, Offenbach

Hans-Ertel-Zentrum für Wetterforschung **Deutscher Wetterdienst**

Regional Reanalyses

- **Developed within the Hans-Ertel-Centre** for Weather Research (HErZ)
- Two COSMO-based reanalyses
 - o COSMO-REA6
 - CORDEX EUR-11 domain
 - 20 years (1995 2014)
 - 6 km horizontal res., 40 vertical layers
 - o COSMO-REA2
 - Extended COSMO-DE domain
 - 8 years (2007 2014)
 - 2 km horizontal res., 50 vertical layers

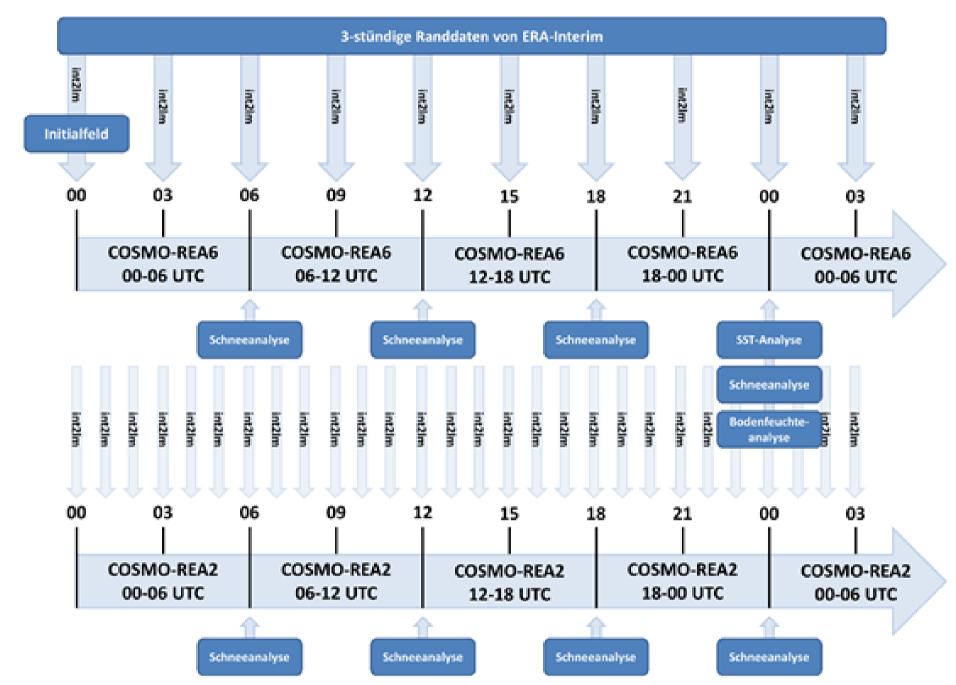


Figure 2: Process cycle of COSMO-REA6 and COSMO-REA2

ERA-INTERIM COSMO-REA6 COSMO-REA2 Bollmeyer et al. 400 E 320 30°N 20°N

Figure 1: Direct solar radiation (13.04.2013) at surface level for ERA-INTERIM (left, avg 12-15 UTC), COSMO-REA6 (middle, avg 12-13 UTC) and COSMO-REA2 (right, avg 12-13 UTC) domain

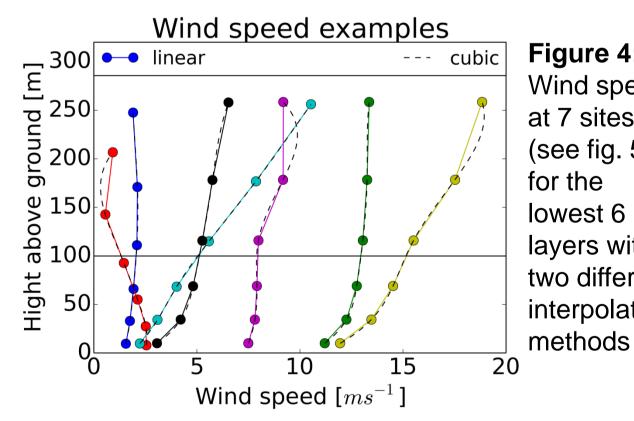
Data Assimilation

- Nudging scheme: SYNOP, SHIP, PILOT, TEMP, AIREP, AMDAR, ...
- REA2 contains additional latent heat nudging (LHN) of weather RADAR
- Output: 150 atm. and surface variables
 - Interval: 15 min (2D), 60 min (3D)
 - Physically consistent variables in space and time

Solar

Central Question:

Added value of regional reanalyses for renewable energy applications?


- Weather conditions exert strong influences on dispatch of **power plants** as well as on electricity infrastructure
- Regional reanalyses provide relevant quantities at high spatiotemporal resolution

Generate data set of renewable energy

General approach to estimate energy potential P

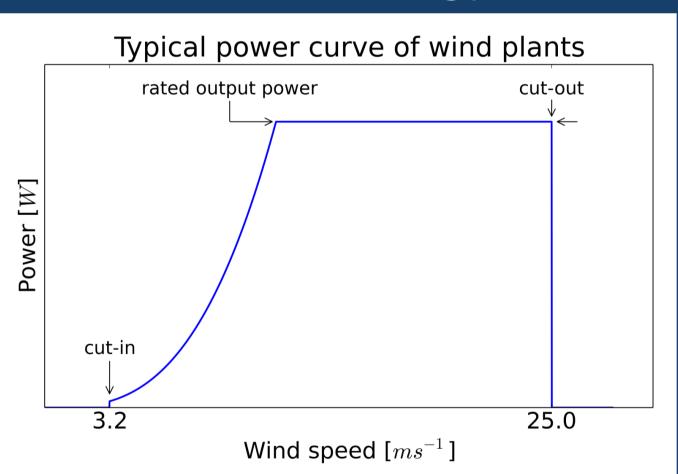
$$P = 0.5 c_p \rho \pi R^2 v^3$$

- Use German mean values for power coefficient c_p and blade radius R
- Air density ρ and wind speed v are interpolated from model layers to hub height

Quantify the theoretical

Temporal and spatial

dependencies


energy

potential for renewable energy

Natural limits of renewable

Key Objective:

Figure 4: Wind speed at 7 sites (see fig. 5) lowest 6 layers with two different interpolation methods

Figure 3: Power output as function of wind speed – Use of German mean values

- High vertical resolution reduces uncertainties in interpolation to hub height
- Validation of approximations like power law, constant air density...

Energy generation Figure 5: REA6 energy generation 01.01.2014 00 UTC, means no energy generation (see fig. 3)

model to "estimate" power production

Generate data set of renewable energy

- Development of double
- Cooperation with Bonn-Rhein-Sieg University of Applied Sciences
- Input variables: Direct, diffuse radiation up and down
- Particularly suitable for silicon PV modules

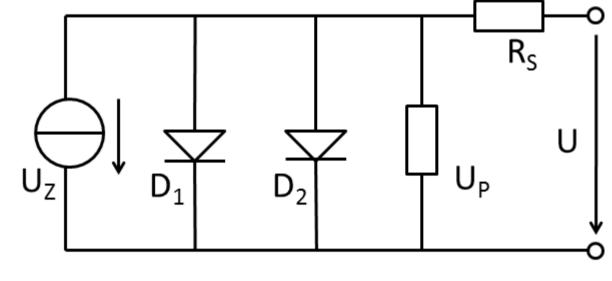


Figure 6: Equivalent circuit diagram (Double diode model)

- Investigate availability of solar energy on various spatio-temporal scales
- Compare estimates of REA-6, REA-2 and ERA Interim
- Evaluate with atmospheric supersites (JOYCE), synop stations and "solar consumptions"

Scale representativeness – Global radiation

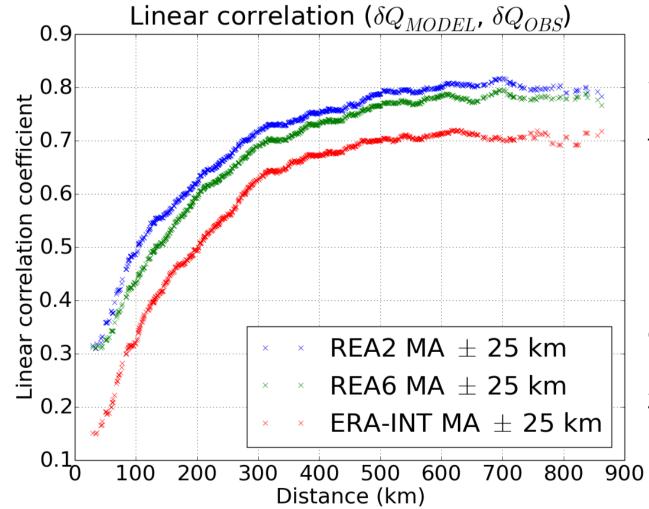


Figure 7: Scale representativeness of REA2, REA6 and ERA-**INTERIM** (Database: Global radiation 2013, avg 12-15 UTC)

Do we have an added value by the use of regional reanalyses and which scales are well represented in the reanalyses?

 $\delta Q = Q_i - Q_j$, (i,j: two sites)

Increasing

representativeness from ERA-INT to REA6 to REA2

Outlook

- Study availability of renewable energy focusing on extremes, e.g., persistent low, persistent high, ramps (sudden increase or decrease).
 - Compound events especially threatening, e.g., simultaneous reduction of solar, wind and water energy production

→ Evaluate risks of high-impact weather

- Identify critical weather constellations and assess their likelihood
- Investigate extreme weather events and their impact on energy potential

→ Define constraints for European market

- Robustness of market/system wrt impact of severe weather events
- Cooperation with Institute of Energy Economics (EWI)