Enhancing JOYCE-NF with Raman Lidar and Dual-Frequency Doppler Cloud Radar

Burgos Cuevas¹, Andrea, Pfitzenmaier, Lukas¹, Haseneder-Lind, R.¹, Krobot, P.¹, Marke, T.¹, Müller, M.², Pospichal, B.¹, and Löhnert, U.¹ ¹ Institute of Geophysics and Meteorology, University of Cologne, ² Institute of Energy and Climate Research, Reseach Center Jülich

Motivation – Raman Lidar (RL)

High-resolution and continuous temperature and water vapor profiles in the ABL, through the entrainment zone and into the free troposphere during day and nighttime

- Better understanding of processes in the cloudy ABL throughout the diurnal cycle by synergistic retrievals using other JOYCE sensors (such as microwave radiometer, infrared spectrometer AERI, cloud radar)
- Investigation of the land-atmosphere interactions
- Data assimilation with ICON, Satellite evaluation (MTG-S)

Motivation - Radar

ImproveprofilingofABLcloudsandgaindeeperinsightintoice&mixed-phasemicrophysics

- Use of dual wavelength radio
- Make use of the polarimetric radar variables
- Synergies with other remote sensing systems of JOYCE
- Develop new retrieval algorithms

Specifications Raman Lidar

Next Steps Raman Lidar

Installation planned for Autumn/Winter 2023

Specifications - Radar

10

- FMCW Dual Frequency Polarimetric Cloud Radar at Kaand W-band
- Full scanning capability
- Low power and robust (solid state transmitter)
- Both frequencies on one scanner, [#]g optimized beam matching for dual [#]g optimized beam matching for dual
- Measured variables: Ze, V_m, Sw, Skewness and Kurtosis and Doppler spectra
- Full Polarimetric capabilities in both channels: additional variables Zdr, Phi, K_{dp} and Rho_{HV} as well as spectral polarimetric information

(a) Ze and (b) MDV at Ka-band, and the (c) DWRKaW are shown as time-height plots. From polarimetric observations at W-band and 30° elevation angle (mapped to height above ground), the (d) maximum spectral ZDR sZDRmax and (e) KDP are presented. In (a–e), the dashed red lines depict the –20, –15 and –10 \circ C isotherms.

18:00

15:00

Plot from Van Terzi et al., 2022

06:00

- First experimental, then routine 24/7 observations
- Derive temperature and humidity profiles, evaluate with other JOYCE instrumentation
- Combine RL temperature and humidity profiles with Doppler Lidar velocities to derive profiles of sensitive and latent heat fluxes in the ABL

Next Steps Radar

- Installation planned for Autumn 2023, test setup, compare to MIRA-35
- Derive LWC profiles with dual-wavelength technique (O'Connor et al. 2005)

00:00

03:00

 Common scan-pattern with JuxPol (scanning X-band radar in JOYCE proximity) and investigate polarimetric radar variables for cloud microphysical process studies

References:

- von Terzi, L., Dias Neto, J., Ori, D., Myagkov, A., and Kneifel, S.: Ice microphysical processes in the dendritic growth layer: a statistical analysis combining multi-frequency and polarimetric Doppler cloud radar observations, Atmos. Chem. Phys., 22, 11795–11821, https://doi.org/10.5194/acp-22-11795-2022, 2022.
- Raymetrics Technical Proposal: Water Vapor and Temperature Raman Lidar for JOYCE, Technical Documentation
- O'Connor, E. J., Hogan, R. J., & Illingworth, A. J. (2005). Retrieving stratocumulus drizzle parameters using Doppler radar and lidar. Journal of Applied Meteorology, 44(1), 14-27.
- Turner, D. D., Feltz, W. F., & Ferrare, R. A. (2000). Continuous water vapor profiles from operational ground-based active and passive remote sensors. Bulletin of the American Meteorological Society, 81(6), 1301-1318.

2023 ACTRIS-D Meeting, Aachen, June 13-14