

Cloud detection and quality checks for stand alone ground based microwave radiometer

Moritz Löffler

BMD Seminar

14.6.2022

 → LV1: Brightness temperatures (T_b)
 → LV2: Temperature and water vapor profile Liquid water path (LWP)

Microwave Radiometers in Weather Prediction

Data for Assimilation

All steps performed in the observation space i.e. Brightness Temperatures (Tb) rather than retrieved thermodynamic profiles.

OWD

Assimilation of MWR Tb

MWR Observations minus Background (OmB)

MWR OmB including cloudy data Obs. minus first guess HatproG5 LG - ICON-D2

(with static bias corr)

The displayed data include a bias correction to account for the systematic deviations

- Significant differences in presence of liquid water are visible
- \triangleright Transient deviations (clear-sky) indicate the information content with respect to the model background

Impact of Cloud Liquid Water and Rain

Histogramme von Beobachtung (MWR @ Lindenberg) minus Background (ICON-D2) from Okt. '20 to Dez. '21 sortiert nach detektiertem Einfluss von Flüssigwasserwolken in Beobachtung bzw. Model . Nur TB_{MW} @ 22.2GHz.

- > In presence of clouds, the distributions are skew, asymmetrical und broad.
- > In presence of rain or dew: very large mean deviations due to signals of non atmospheric origin

Impact of Cloud Liquid Water (and Rain)

- K-Band and transparent part of V-Band are sensitive to cloud liquid water
- Small scale variability of liquid water causes a error of representativity in model comparisons
- Variability of Tb and Liquid water path are known indicators for detecting cloud liquid water.

Cloudy/Clear-sky Classification

Detect Liquid Water Clouds

Image: second clear 0.8 0.2 - 1.00 Image: second clear 0.8 0.2 - 0.75 Image: second clear 0.14 0.86 - 0.25 Image: second clear - 0.00 - 0.00 Image: second clear - 0.00

Performance of the empirical method

Rate of detection of liquid water clouds using the CloudNet target classification as a ground truth reference.

New Development

- Develop a machine learning based algorithm with
 - low latency,
 - geographic independence,
 - few requirements to additional instrumentation
 - applies to all elevation angles
- Aiming to obtain a standard algorithm which is accepted and used within ACTRIS and E-profile.
- Develop a method which assesses the spectrum consistency and can also be used for quality checks.

First look into data and filtering

Observed data with cloud info

- Using CloudNet target classification as a ground truth for evaluating classification algorithms.
- clear-sky, cloudy and overlapping
- Removing cases with rain (rainsensor)
- Removing cases with rain (distrometer)
- Add undetected low clouds to CloudNet classification
- Final dataset which I'll be using in the following

Precision and Recall

Empirical Method

- Performance of empirical method is benchmark for new developments
- Overlapping structure of dataset complicates separation of clear and cloudy cases.
- The presence of liquid clouds at very low TbIR indicates issues with CloudNet classification as a "True" reference

Neural Network with 1 hidden layer (Perceptron)

- Performance is typical for ML based algorithms.
- ML based approaches result in small improvements with respect to the empirical method.
- Including additional dimensions for predicting has a small impact on precision and recall

Descision tree -> random forest (tree ensemble)

Random Forest

Spectral consistency

Liquid water on the radome

FESSTVaL campaign summer 2021 @Lindenberg

The radome is kept dry with:

- heater, blower and rain sensor
- Hygroscopic coating

Automatic identification of water on the radome (e.g. after rain events):

Evaluation of spectral consistency of Tb data: Tb observations vs. Tb spectral retrieval from neural network retrieval algorithm (LV2 product)

Liquid water on the radome Observation HATPRO G5 minus SPC retrieval (RPG) @ 53.9 GHz Brightness Temperature in K 12 threshold TB obs minus retrieval 10 rain 8 wet 6 Δ 18:15 18:05 18:10 18.20 18:25 18:30 18:00 Time 2021-May-15 Observation HATPRO G5 minus SPC retrieval (RPG) @ 53.9 GHz Brightness Temperature in K 12 threshold TB obs minus retrieval 10 rain 8 wet 6 4 2 19:25 19:30 19:35 19:55 19:15 19:20 19:40 19:50 20:00 19:45 2021-Aug-10 Time

Outlook

- Cloudy/clear-sky classification and spectral consistency checks based on
 - Reanalysis and radiative transfer modelling,
 - Observed data
- which
 - has few requirements to additional instrumentation
 - applies to all elevation angles
 - is simple and fast

Thank you!

Kontakt:

Moritz Löffler

Moritz.loeffler@dwd.de

14.6.2022

BMD Seminar 1 Moritz Löffler