Investigating mixed phase clouds using a synergy of ground based remote sensing measurements

R. Gierens¹, S. Kneifel¹, M. Maturilli², U. Löhnert¹ ¹ Institute of Geophysics and Meteorology, University of Cologne (Germany), ² Alfred Wegener Institut (Germany)

Arctic Amplification: Climate Relevant Feedback Mechanisms (AC)³

- key processes contributing to Arctic Amplification
- Comprehensive cloud observations carried out at AWIPEV station in Ny Ålesund

Acknowledgements:

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft) within the Transregional Collaborative Research Center (TR 172) "Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)³".

EGU General Assembly 2017, Vienna (Austria). 23-28/4/2017

Time (UTC)

Vertical air motion driven by cloud top radiative cooling

Supercooled liquid water and dynamics connected:

Updraft \rightarrow increase in LWP and skewness

Downdraft \rightarrow decrease in LWP

Ice growth connected to presence of cloud liquid:

More liquid \rightarrow more ice

Fig 5. Cloud top structures revealed by different radar moments. Liquid water path is retrieved from the radar's 89 GHz passive channel³ and the Hatpro

rgierens@uni-koeln.de