

Comparison between Atmospheric Boundary Layer Height remote sensing-retrievals over a complex topography

Andrea Burgos Cuevas

A. Magaldi-Hermosillo, D. Adams, J.L. García-Franco, M. Grutter de la Mora, A. Ruiz-Angulo

National University Autonomous of Mexico (UNAM) University of Cologne

1/9

Mexico City, complex terrain

Mexico City, complex terrain

Mexico City, complex terrain

Mexico City, complex terrain

Burgos-Cuevas et al. EGU22-4735ECS

Approaching ABLH

One year (Nov 2018- Oct 2019) data from:

Radiosonde stable layers

• Thermally stable layers 250-3000 m a.g.l. at 0600 and 1800 h local time.

Approaching ABLH

One year (Nov 2018- Oct 2019) data from:

Radiosonde stable layers

• Thermally stable layers 250-3000 m a.g.l. at 0600 and 1800 h local time.

Ceilometer backscatter

 Gradient and wavelet methods
[Garcia-Franco et al. 2018] (every 10 min).

Approaching ABLH

One year (Nov 2018- Oct 2019) data from:

Radiosonde stable layers

• Thermally stable layers 250-3000 m a.g.l. at 0600 and 1800 h local time.

Ceilometer backscatter

 Gradient and wavelet methods [Garcia-Franco et al. 2018] (every 10 min).

Doppler lidar velocities

• Turbulence threshold method: $\sigma_w^2 < 0.1 m^2 s^{-2}$, $\sigma_w^2 < 0.2 m^2 s^{-2}$ (Twice-an-hour).

Burgos-Cuevas et al. EGU22-4735ECS

Stability, Backscatter and σ_w^2

Stable layers (radiosonde)

Backscatter (ceilometer)

Stability, Backscatter and σ_w^2

Stable layers (radiosonde)

Backscatter (ceilometer)

October 12, 2022

6/9

ABL heights retrieved by all methods (diurnal cycle)

Burgos-Cuevas et al. EGU22-4735ECS

7/9

Monthly-mean diurnal cycle (Nov 2018-Oct 2019)

Conclusions

- ABLHs estimated via thresholding (with Doppler lidar data) and via backscatter (with ceilometer data) both reproduce a physically realistic diurnal cycle.
- However, the daytime thresholding-estimated heights are always lower than the ceilometer-retrieved ones.
- The difference between both remote sensing estimations suggests that aerosols may be able to disperse upper in the atmosphere than where the current convective turbulence is reached.

Conclusions

- ABLHs estimated via thresholding (with Doppler lidar data) and via backscatter (with ceilometer data) both reproduce a physically realistic diurnal cycle.
- However, the daytime thresholding-estimated heights are always lower than the ceilometer-retrieved ones.
- The difference between both remote sensing estimations suggests that aerosols may be able to disperse upper in the atmosphere than where the current convective turbulence is reached.

Thanks for your attention!