Ground-based atmospheric remote sensing at the Jülich Observatory for Cloud Evolution – JOYCE-CF

Bernhard Pospichal¹, Josephin Beer², Silke Trömel², Ulrich Löhnert¹

¹University of Cologne, ²University of Bonn

What is JOYCE-CF?

- JOYCE-CF is an advanced setup of ground-based remote sensing observations with the focus on clouds and precipitation processes and boundary layer observations
- Cooperation of the Universities of
 Bonn and Cologne and the Research
 Center Jülich

Why JOYCE-CF?

Lack of understanding: from water vapor → aerosol
→ clouds → precipitation under different
atmospheric & surface conditions

Equally important for

- → climate research
- → forecasting applications

JOYCE-CF includes 3 Sites..

BoXPol: polarimetric X-band radar in Bonn **JuXPol**: polarimetric X-band radar Sophienhöhe (close to Jülich)

JuCol: extended column observations at Jülich

Instrumentation

Instrumentation

Instrumentation

Core Instruments – Doppler cloud radar MIRA

Science issues

- Morphology of clouds (phase, location, thickness, overlap,...)
- Cloud microphysical properties (water content, particle size,...)

Specifications:

- frequency of 35.5 GHz (8 mm) \rightarrow sensitive towards cloud droplets
- height range 150-15000 m, range resolution 30 m, temporal resolution 1-10 s
- Doppler radar with polarimetric capabilities
- scanning capability: combined azimuth and elevation scans
 - \rightarrow information on 3-dimensional cloud structure

Core Instruments – Doppler cloud radar MIRA

radar reflectivity factor 14.9.2017 Jülich valent Radar Reflectivity Factor Ze of Hydrometeors 13:01 14:09.2017 - 14:00 14:09.2017 Forschungszentrum J 35 GHz 12 doppler velocity cloud radar Doppler Velocity VELg 13:01 14.09.2017 14:00 14.09.2017 Forschungszentrum Juelich 10 **MIRA** 12 8 10 Height km 10 [•]linear depolarization ratio Height km Linear De-Polarization Ratio LDRg 13:01 14.09.2017 - 14:00 14.09.2017 Forschungszentrum Juelich 12 10 13:10 13:20 т -10 Height km LDRg dB 20 13:40 13:10 13:20 13:30 Time UTC -30 backscatter proportional r⁶ (disadvantage for mass determination) 13:10 13:20 13:30 13:40 13:50 14:00

Time UTC

Instruments – Multi frequency radars

JOYCE - CF

Core instruments – Microwave radiometer

Science issues

- thermodynamic state in the clear AND cloudy atmosphere (water vapor, temperature, cloud condensate)
- observe the diurnal cycle

- \rightarrow Integrated Water Vapor (IWV): 0.6 kg/m²
- \rightarrow Liquid Water Path (LWP): 20 g/m²
- \rightarrow Humidity profiles: 0.4-0.8 g/m³
- → Temperature profiles 0.5-1.0 K especially boundary layer)

- (2 degrees of freedom)
- (4 degrees of freedom,

Core instruments – Doppler lidar

- Delivers profiles of backscatter coefficient
- Measures Doppler effect on small particles (e.g. aerosols)
 - → along-sight Doppler velocity
 - Scanning configurations allows to derive wind vector as a function of height

Core Instruments – BoXPol and JuXPol

	BoXPol	JuXPol
Location (Lat./Lon.)	50.73052°/ 7.071663°	50.92750° / 6.45626°
Height (m)	99	310
Frequency (GHz)	~ 9.3	~ 9.3
Туре	EEC (DWSR- 2001-X-SDP	EEC (DWSR- 2001-X-SDP
Elevation	0° - 90°	0° - 90°
3-dB beamwidth	~ 1.05°	~ 1.1°
Signal Processor	Enigma3 Enigma4	Enigma3 Enigma4
Max range (km)	150	150
Special	Without radom	With radom

- 48 km distance between BoXPol and JuXPol
- JuXPol on artificial hill (openpit-mining, industry)
- BoXPol in urban area (partial and full beam-blockage)

Reflectivity and Doppler velocity

JOYCE - CF

State of the art studies

- Polarimetric synergy (Trömel et al. (2017))
- 3D Komposit
- River catchments
- GPM satellite validation

BoXPol and JuXPol

- Testbase for theories and impacts on shorter wavelengths
- Continous scans but 'free' access and handling make it optimal for research including radar combinations
- More free than operational DWD radars with one research radar
- Home made additional instruments allow synergies

Projects and Campaigns at JOYCE-CF

- HOPE HD(CP)² Observation Prototype Experiment (Macke et al., 2017) – 2 months intensive observations
- Observation of small-scale variability in the area around Jülich for model evaluation
- Deployment of instruments from other institutions (in total 3 supersites including TROPOS, KIT)
- Variability of solar radiation with pyranometer network
- Frequent radiosoundings

Projects at JOYCE-CF

- HD(CP)² Phase 2 Supersite coordination
- TR32 (Soil-Atmosphere-Vegetation interaction)
- ET-CC (Energy Transition and Climate Change) -> cloud variability
- ACTRIS2 (Cloudnet), ACTRIS-PPP
- COST TOPROF
- Hans Ertel Zentrum (HErZ)

Instrument Synergy

- Steady increase of co-located instruments since 2008 for cloud and precipitation studies, especially focusing on boundary layer
- Instrument synergy vital for optimal observations
- Cloud studies also need information on
 - temperature
 - water vapor
 - 3D wind vector
 - turbulence
 - aerosols
 - radiation
- JOYCE-CF provides datasets for various applications over many years

Examples for instrument synergy

- Integrated Profiling Technique (IPT) Ebell et al., 2017
- Cloudnet

JOYCE - CF

- cloud radar, microwave radiometer, ceilometer
- Boundary-layer studies
 - Doppler lidar, ceilometer, microwave radiometer (e.g. Saeed et al. 2016)
- Cloud/Ice microphysics
 - multi-frequency radar (e.g. Kneifel et al., 2016)
- Thermodynamic profiles
 - microwave radiometer, AERI infrared spectrometer, lidar (e.g. Barrera Verdejo et al., 2016, Turner and Löhnert, 2014)
- Water vapour distribution
 - GPS, microwave radiometer, sun photometer (e.g. Steinke et al, 2016)

Networks (Cloudnet/ACTRIS)

- Network of operational MWR in Europe getting denser
- Within ACTRIS, every Cloudnet station needs to have a MWR
- For network activities, common calibration procedures and data quality important
- Calibration was not considered being the crucial issue until now > JOYCE-CF part of ACTRIS as topical center for MWR

Access to data

- Data access is currently partly done via the SAMD portal (Standardized Atmospheric Measurement Data) <u>https://icdc.cen.uni-hamburg.de/index.php?id=samd</u>
- In future all standardized products will be available via this data base
- Website <u>http://joyce.cloud</u> will list all data products and their access options
- Raw data (e.g. Radar spectra) will be available on request, also linked from higher level products on SAMD

Summary

- JOYCE-CF is a so-called "supersite" for ground-based atmospheric remote sensing
- Since 2007 continuous growth of JOYCE-CF
- Long-term observations of cloud and rain properties, special focus on boundary layer (talk by Marke et al. yesterday)
- Studies on surface-atmosphere interaction, cloud evolution
- Combination with atmospheric modelling (see talks by Schemann, Acquistapace later today)
- Participation in international networks, Access for external

