

Boundary Layer Classification from Doppler Lidar & Microwave Radiometer and its Applications within ACTRIS

A. Burgos-Cuevas, T. Marke, L. Pfitzenmaier, B. Pospichal, U. Löhnert | 21.06.2022

Characterizing ABL structure and evolution

- ABL stability structure influences the formation of boundary layer clouds.
- ABL stability and mixing processes determine the dispersion of pollutants, therefore this characterization has air quality applications.
- A better knowledge of ABL processes is essential for improving the parametrization of these processes in numerical models.

Universit

Observing the cloudy ABL

- Essential for improving our physical understanding
- Best possible by means of continuous ground-based remote sensing using ACTRIS instrumentation

Instruments (measuring continously)

MWR Temp., LWP, IWV

Ceilometer Clouds, aerosols, ABL height

Pyranometer Radiation

Cloud Radar Cloud microphysics

Doppler Lidar Winds, turbulence

JOYCE: Jülich Observatory for Cloud Evolution

Cloud Remote Sensing at JOYCE has been operating for more than 10 years and is now ACTRIS National Facility.

Synergistic approach: Turbulence and stability

Doppler Wind Lidar

Microwave Radiometer (MWR)

- Wind components (u, v, w) derived.
- Turbulent sources identified, e.g. surface vs. cloud driven

- Temperature profiles derived.
- Evolution of the thermal stability.

Wind components from Doppler Wind Lidar

Backscatter β and statistical moments of the vertical velocity *w* allow to classify turbulent mixing in the ABL (Manninen et al. 2018).

Wind components from Doppler Wind Lidar

Backscatter β and statistical moments of the vertical velocity *w* allow to classify turbulent mixing in the ABL (Manninen et al. 2018).

Skewness for identifying turbulent sources

ABL classification

- Identification of turbulent regions that are characterized through different turbulence origins.
- Better understand complex mixing processes and their evolution.

Statistics of ABL classification at different sites

Universität

zu Köln

GERMANY

Thermal stability from microwave radiometer

- Brightness temperatures (T_b) are measured at 7 oxygen absorption channels and at 6 elevation angles.
- Temperature profile in the lower troposphere retrieved.

Thermal stability from microwave radiometer

- Temperature profiles are used for ABL stability characterization
- 4 profiles per hour, diurnal evolution of stability can be elucidated.

Diurnal evolution of the thermal stability

- The most stable layer and its height were estimated throughout the day.
- Strong thermal inversions are present during night-time, and they are dissolved with diurnal convection.

Diurnal evolution of the thermal stability structure

- The vertical thermal structure is investigated via the Brunt–Väisälä frequency (N²).
- N² is a measure of the static stability of the environment.
- The evolution of the thermal stability is elucidated.

ABL classification updated with N²

without N^2

with N^2

- Transitions from shear driven to convective turbulence are difficult to identify from Doppler lidar alone.
- Synergy with MWR helps to improve the classification using height resolved stability information (N²).

Comparing convective layer height and $N^2 = 0$

Winter 2019

Summer 2019

Comparing two cases

Winter 2019

Summer 2019

Complementary information of ABL evolution

Winter

GERMANY

zu Köln

Complementary information of ABL evolution

Summer

Preliminary Conclusions

- Employing JOYCE observations with high temporal resolution allow us to better characterize the evolution of ABL stability and turbulence, which are crucial processes for modeling and air quality applications.
- Combining MWR with DL gives complementary information on ABL structure and improves ABL classification.
- The inclusion of N² in the ABL classification can be used to better identify the sources of turbulence.

Preliminary Conclusions

- The present turbulence and stability characterization can be combined with in situ observations of aerosols in the frame of ACTRIS.
- The ABL classification can be included as an ACTRIS product in CLOUDNET
- Next steps (1): estimation of Richardson number and thermodynamic indices will help us to better characterize the ABL stability and identify sources of turbulence.
- Next steps (2): investigation of sensible and latent heat fluxes in ABL employing highly resolved temperature and WV measurements (from AERI and Raman lidar) and vertical velocities (from Doppler lidar).

