Earth - Evolution at the dry limit

"A new network of meteo stations in the Atacama,

Jan H. Schween¹, Dirk Hoffmeister², Ulrich Löhnert¹

¹Inst. f. Geophysics and Meteorology, ²Inst. f. Geography, University of Cologne, Germany

Foto: Ministerio de bienes nacionales

Motivation

- The Atacama is the driest place on earth with in some places no precipitation for years
- Observations are sparse
- Models and databases disagree on precipitation
- Satellite products overestimate precipitation by 1-2 orders of Magnitude
- Fog is in many places the main water source

^{19°}The network

Three transects with 5(4) stations:

- one station close to the coast
- one station at around 2300m AMSL
- stations are numbered from W to E.
- one ,Master' per transect.

Transect 1 (21.5°S)

 along lower Rio Loa:
 corridor for humid air from the pacific (Cereceda et al 2008).

Transect 2 (19.7°S)

 gypsum desert in the northern coastal range and the alluvial fan along Quebrada Aroma.

Transect 3 (25°S)

 \circ Gradient from ,humid' Paposo to inland

Instrumentation

Every station

- wind speed (v) and direction (dir) (2.5m)
- air temperature (Ta) and relative humidity (rH)
- pressure (P), precipitation (prec),
- solar radiation (SW dn+up)
- surface temperature (Ts)
- soil temperature (Tg, 5cm)
- soil water content (SWC, 5cm)
- (leaf) wetness

Master stations additionally measure

- second level (4m) of v, dir, Ta and rH
- four components of radiation budget (SW dn+up, LW dn+up)
- ground heat flux (G, 5cm)
- 4 additional levels of Tg and SWC (10-40cm)
- → 29+ Variables
- Parameters allow calculation of energy budget and turbulent fluxes

Seasonal course of humidity

Diurnal course of wind

- Very regular pattern
- Similar at all inland stations
- Night noon: low speeds from east (Andes)
- Noon evening: high speeds from west (sea)

Wind and Humidity over the day

- => dry air from the desert to the ocean
- => moist air from the ocean into the desert
- Similar at all inland stations, except 15, 25, 34 (Andes slope)
- Where does the moisture go ?
- 3 options:
 - 1. Into desert as fog or dew
 - 2. To the Altiplano
 - 3. To middle troposphere
- Estimate of option 1 gives 0.2mm/day as average over the year in central valley
- Compare to 0.15mm/year at Quillagua !

Fog

- Fog mostly in winter not in summer
- Always beginning in the night Duble
- Beginning with west wind (from (days) the ocean)
- Then Turning to easterly (from the desert)
- Sometimes lasting till noon
- 256 cases/524 days = 1/2days
- Fog during 15% of the time

General circulation

- Night, early morning:
 - Down slope winds at the Andes and at the coast
- Day, evening:
 - Upslope winds
 - Injection of moist, aerosol rich air from pacific into desert and further transport to
 - Desert (fog or dew deposition)
 - Middle troposphere
 - or Altiplano
- Derived from data of Meteo stations and remote sensing of wind profile at the coast at Iquique in agreement with Rutlland et al 2003 (JGR 108/D17)

Summary

- We installed a network of 15 climate stations in the Atacama desert
- Organized in 3 transects from the coast to ~2400m AMSL
- Equipped with standard meteorology (wind, Temp. humidity) but also radiation sensors, soil temp and moisture
- Master station equipped for flux estimation
- First results:
 - Wind system dominated by Andes: from noon to evening to the mountains, from night to noon from the mountains
 - Wind transports moisture towards (in ?) the desert
 - During half of the nights fog in the coastal range
 - Fog during 15% of the time and 1/2days

Weather Data

Data available via data base website of SFB: https://www.crc1211db.uni-koeln.de (CSV-ASCII)

Netcdf in preparation

ma desert, which were installed by the e Andes each consisting of four to five

cama desert, Chile. CRC1211 Database

Weather Stations

D₹	Type 🗢	Name	♦ Startdate♦ Tran	sect 🗢 🔶	Karte	Sate
11	basis	Caleta Loa	2017-10-01 cente	r	Karte	Sater
12	basis	Rio Loa	2017-09-10 cente	r		
13	master	Cerros de Calate	2017-03-01 cente	r		
14	basis	Salar de Llamara	2017-09-22 cente	r		
15	basis	Quebrada de Mani	2017-09-25 cente	r		
20	basis	Alto Patache	2018-03-05 north			
21	basis	Caleta Junin	2018-03-06 north			
22	basis	Cerro San Antonio	2018-03-09 north			
23	master	Cerro Constancia	2018-03-09 north			
24	basis	Quebrada de Aroma	2018-03-10 north	_	Goog	le

Details of the selected weather station

Parameters of the selected weather station

Lat: -21.4029°	Installation date: 2017-03-01
Lon: -69.8402°	Communication: GOES
UTM-N: 7632230m	Last Visit: 0000-00-00 00:00:00
UTM-E: 412286m	Documents:
Elevation: 1148m	
DOI: <u>10.5880/CRC1211DB.4</u>	Protocols & malfunctions:

Gallery

i urumotor	0 01 110 00100100								II AL AL
Туре	- Manufactures	Modell	♦ Measuring Parameter	♦ Measuring Unit	Abbre- viation	♦ Measuring Height	PDF	rsität Köln	
Battery	Campbell		datalogger battery voltage	V	BattV	1.200			
Humidity	Campbell	Leaf wetness sensor	leaf wetness	mV	LWmV	0.200			

Thank you

Remote sensing of clouds in Iquique

Cloud radar 35Ghz

- Sensitve for cloud droplets
- Cloud base and top (~)
- Radar reflectivity
- Doppler velocity

FogHat microwave radiometer

- Temperature and humidity as function of height
- Water vapor column (IWV)
- Liquid water column (LWP) Doppler Windlidar
- Backscatter (-> cloud base)
- vertical wind speed
- Horizontal wind speed (scans)

Typical day in summer

Top of Aerosol Layer at ~1km Wind at surface

- from south
- during daytime stronger and inland component
- Wind at 1km
- during daytime from east
- during night from north west
 Mixed Layer
- Max height at 500m

Typical day winter

- Cloud top at ~0.9km => 400m thick Cloud is drizzling but does not reach surface -but maybe at cliff (?) LWP of drizzling cloud ~150 g/m2
- End of drizzle => thin cloud with very low LWP

