Radiative effect of clouds at Ny-Alesund, Svalbard, as inferred from
ground-based remote sensing observations ‘o
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* Clouds strongly impact the available energy at the surface, at the top of the
atmosphere as well as its vertical distribution within the atmosphere. 2 SE R : N N S S :
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Question: What is the radiative effect of clouds at the Arctic site Ny-Alesund? g;ig F % T T % T H a ? H a H T H a % % H a % T % B T - -
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- for the first time, the impact of clouds on the shortwave (SW) and longwave (LW) oot — LD OOy U T TUNE e = (black) surface cloud radiative effect (CRE) at Ny-
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of continuous vertical cloud measurements at the German-French research station Lo T RN B 2 L values.
AWIPEV ?H Wr?f%"”%?ﬂﬁﬁﬁ “% LW SFC CRE follows the seasonal cycle
s T of FOC of liquid and LWP (Fig. 4)
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Retrieval of cloud macro- and microphysical properties (FOC) of any hydrometeors (black) and liquid droplets 12 Wm~™2 - overall, clouds have a
(grey) in atmospheric column, d) non-zero liquid : £f h £
* based on Cloudnet target oo ' l ' l : T water path (LWP) and e) non-zero ice water path (IWP). warming efrect at the surrace at Ny-
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Table 1: Overview of applied cloud microphysical retrieval algorithms.
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Cloud property Retrieval method

E SW (alb<0.3)
E SW (alb>0.8)

liquid water content  liquid only clouds: Frisch et al. (1995) using radar reflectivity factor Z and liquid water g’zoo 200 S A 'i'g: B o
path (LWP) from microwave radiometer; mixed/multi-layer clouds: scaled adiabatic = o éa o 1 I ___________ I E
LWC profile using LWP of MWR . o £ # $ ~
liquid effective radius liquid only clouds: Frisch et al. (2002) using Z and MWR LWP; mixed/multi-layer £ ;
clouds: climatological value (5 pm) : 0 g 200f- ' :
ice water content Hogan et al. (2006) using Z and temperature T R Y A VP - i | | | ]
ice effective radius Delanoé and Hogan (2010) using IWC and visible extinction coefficient & from Hogan et Fig;c5: NEILSlérfacel CRE ag g fo:ng)On (())fBLVTVPI: and ISZA f_Orba) ; O T welge 0T
. : surface albedo values > 0.8 and b) > 0.3. The analysis is base ,
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.. . . b) net surface CRE as a function of IWP for
Radiative transfer calculations with RRTMG » liquid containing-clouds: LW SFC CRE can cases witlh |?vtv (d<? grg\;& Lg/t/)g. TP:je sw and NET
. . . . . is calculated for SZA<90° and surface
. . Aerosolinformation (climatological  Surface properties be explained to a large extent by the LWP; albedo <0.3 (blue) and > 0.8 (green),
model profiles + surface obs. microphysical profile shape from lidar obs. at Ny- temperature) SW and net surface CRE mainly depend mean values.
combined with MWR IWV) properties Alesund; maritime clean aerosol) from BSRN data on LWP, SZA and surface albedo (Fig. 5)
@ ﬂ INPUT ﬂ @ * ice clouds: asymptotic behavior of LW CRE(IWP) similar to liquid-containing clouds
(Fig. 6); net CRE always positive for high surface albedo; for low surface albedo

Rapid Radiative Transfer Model RRTMG

dependence on SZA and IWP with a warming effect only for SZA > 80°
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fluxes and heating rate profiles Relative contribution of liquid and ice clouds to surface CRE

* discriminating between “liquid”
clouds with LWP >5 gm™ and
“ice” clouds with IWP >0 gm™ and
LWP <5 gm™
“ice” clouds can contribute up to
75% in the net SFC CRE during polar
night (Fig. 7)
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fluxes (Fig. 2) g 041 Rz 1 g os G 62 3 * For the first time, the cloud radiative effect has been characterized for the Arctic site Ny-Alesund.
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