Investigating the impact of spaceborne radar blind zone on surface snowfall statistics in polar regions

Nv-Ålesund

Precipitation Amount [%

M. Maahn¹, C. Burgard², S. Crewell¹, I. Gorodets kaya³, S. Kneifel¹, S. Lhermitte³, K. Van Tricht³ and N. van Lipzig³ ¹ Institute of Geophysics and Meteorology, University of Cologne, Germany ²University of Hamburg, Germany ³ KU Leuven, Belgium

What are the

implications for

global snowfall

statistics?

1. Motivation

CloudSat

- is the only source of global snowfall estimates derived from radar reflectivity (Ze at 94 GHz, 3.2 mm) profiles.
- cannot observe snowfall doser than 1200 m to the ground ("blind zone").

Fig. 1: Typical CloudSatcrosssection

2. Data set

- Temporally continuous radar reflectivity profiles measured by groundbased Micro Rain Radar (MRR) at 24 GHz (12.4 mm)
- Sites in both hemispheres: Princess Elisabeth (PE) station in East-Antarctica and Ny-Ålesund (NÅ), Svalbard. 1 year of data is analyzed.
- MRR Blind-zone: PE 400m, NÅ 240m

Fig. 2: Conversion of reflectivity Ze from 35 GHz to 94 GHz for snow(dashed), aggregates (sdid), andthreebullet rosettes (dotted) derived from the Ze-S relations of Kulie and Bennartz [2009]. Fig. 3:Frequencydistribution of snowfall rates Sfor Cloud Sat(red) ard MRR(tlue) data at 1200 m ag lforthe (a) Princes Elisabeth ard (b) Ny-Mesurdi stations, where snowfall rate was determined by the range of Ze-S relationships in Kulleard Bernatz (2008) The line/polygon represents the meantrange of Sfor these Ze-Serelationstrips.

3. Impact on reflectivity (Ze)

- 2D histograms (Fig.4 left) show only little change of Ze with height.
- Detrended Quantile-Quantile plots (Fig 4, right) reveal that the distribution of Ze is shifted by up to 2.5 dB toward smaller values if measured at 1200 m.

4. Impact on number of events (N)

• At 1200 m, the total number of events is underestimated by 5% to 6% (Fig 5).

PE

Media

When investigating the total number of events, the better agreement due to a reduction of the blind zone cannot be seen: → change from underestimation to overestimation of 9% to 18%

2D histogram

plot

Shows reflectivity

frequency asfunction of

haiaht

Reflectivity [dBz] 24 GHz & 94 GHz

Detrended Quantile-

Quantile plot

shows the deviation from the 1:1

line of a normal Quantile-Quantile

- This change is more strongly pronounced at NA.
- The reason are most likely competing processes: virga and shallow precipitation.

5. Impact on precipitation (S)

- Change in both *N* and *Ze* contributes to the estimation of precipitation amount (Fig 6).
- For NA, the belly shape of *N* can be also seen in the total precipitation amount:

underestimation at 1200 m, overestimation at 600 m

- For PE, such a belly shape is less clear, but still present.
- This shows that virga and shallow precipitation effects are probably partly overlapping at NÅ and PE.

Fig. 6: Contribution of various reflectivity intervals to the total precipitation amount in dependence on height for (a) Princess Elisabeth and (b) Ny-Ales und For the code dareas, the Zes S relation by Kulle and Bennatz (2008) for srow is used. Uncertainly of the border sbetweinthe different intervals due to the Ze-S relations is estimated by the gay, shaded area, which is estimated by applying also Ze-S relations for three bullet rosettes and aggregates by Kulle and Bennartz (2009). The figures are normalized by total surface precipitation. Claud Sa's blind zone of 1200 mag and a educed blind zone of 600m agi are denoted by black and genenlines, respectively.

Precipitation Amount [%]

6. Conclusions

- Blind-Zone has an impact on reflectivity, number of events and total precipitation.
- ➡ effects differ in both hemispheres
- A lower blind-zone improves observation of reflectivity, but does not improve number of events and total precipitation.
 Overlapping of different processes
 - Consider in future satellite missions
- More data needed to investigate spatial representativeness.

References:

Maahn M., C. Burgard, S. Crewell, I. V. Gorodeskaya, S. Kneifel, S. Lhermitte, K. Van Tricht, N. P. M. van Lipzğ, 2014: How does the spacebome radar blind zone affect derived surface snowfall statistics in polar regions? J. *Geophys. Res. Attmospheres*, 119, 1364–13520, doi:10.1002/014J0022079.

Kulie, M. S., and R. Bennartz, 2009: Utilizing Spaceborne Radars to Retrieve Dry Snowfall. J. Appl. Meteor. Climatol., 48, 2564–2580, doi:10.1175/2009JAMC2193.1.

