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0.19
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Std. dev.
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HYPOTHESIS
The consideration of temporal and spatial variability of water vapour is necessary to establish the
role of water vapour for Arctic Amplification

MOTIVATION
▪ Arctic shows moistening trend [1] but magnitude and regional distribution are uncertain

among reanalyses and satellite products [2, 3]

▪ Sparse ground observations and difficulties in satellite remote sensing limit estimation of
water vapour variability [3]

➢ High quality observations gathered during MOSAiC will help to evaluate satellite products
and reanalyses

RESULTS [4]

METHODS
We derive integrated water vapour (IWV), cloud liquid water path (LWP), as well as temperature
and humidity profiles from radiances (expressed as TBs) from microwave radiometers:
▪ HATPRO: 14 channels along water vapour and oxygen absorption lines (22-31 and 50-58 GHz)

Regression with quadratic terms, trained with radiosondes from Ny-Ålesund to derive IWV, 
LWP, temperature and humidity profiles [4]

▪ MiRAC-P: 6 channels along 183 GHz water vapour absorption line, 243 and 340 GHz
Neural Network approach, trained with ERA-Interim to retrieve IWV [4]

▪ ARM: 2 channels: 23.8 and 31.4 GHz
MWRRET: Combination of statistical and optimal estimation retrieval to generate a best
estimate of LWP and IWV [5]

CONCLUSION & OUTLOOK
▪ Continuous data sets with high temporal resolution (≈1 s) available on PANGAEA [4]

▪ Excellent agreement of derived IWV with radiosonde obs (Fig. 1, Fig. 4, Tab. 1)
▪ Profiles show coarser vertical resolution but surface temperature inversions are resolved (Fig. 

3, Fig. 4)
➢ Humidity profiles and IWV may benefit from synergy of HATPRO and MiRAC-P
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Fig. 3: Standard deviation of temperature and humidity
profiles between radiosondes and those from HATPRO. 
Shading indicates the spread over the MOSAiC legs.
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Fig. 2: Daily average of LWP from HATPRO and ARM MWRRET.

Fig. 4: Overview of moist air intrusion case from 13th to 23rd April 2020, 
showing IWV, absolute humidity and temperature profiles from
HATPRO, MiRAC-P and radiosondes.

Fig. 1: IWV time series from HATPRO, MiRAC-P and radiosondes.

Tab. 1: Standard deviation, root 
mean squared error (RMSE), and 
bias (all in kg m-2) between the
radiometer and radiosonde IWV for
IWV ≤ 5 and IWV > 5 kg m-2.

MOSAiC observations show a large variability in IWV and LWP (Fig. 1, Fig. 2). In dry conditions, MiRAC-P agrees
extremely well with radiosondes, while HATPRO and ARM slightly deviate (Tab. 1). This is the opposite for
moister conditions, where MiRAC-P shows higher deviations than the other radiometers. Regarding LWP, both
HATPRO and ARM agree well on most days. Absolute calibrations of HATPRO and MiRAC-P ensure high quality
measurements (Fig. 1).

Retrieved temperature and 
humidity profiles from HATPRO 
are able to resolve coarse
inversions but cannot detect any
small variations (Fig. 3, Fig. 4). 
Especially the boundary layer
mode of HATPRO is able to
capture lower tropospheric
inversions.

Fig. 4 shows the record breaking
moist air intrusion captured in 
April 2020. Coarse temperature
inversions are resolved but the
humidity inversions are smoothed
out.


