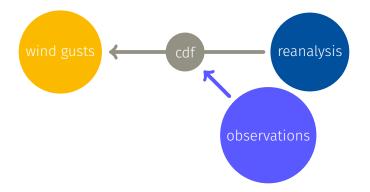


Vertical profiles of wind gust statistics

from a regional reanalysis using multivariate extreme value theory

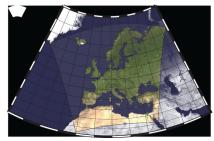
Julian Steinheuer, Sabrina Wahl and Petra Friederichs September 12, 2019


Institute for Geophysics and Meteorology, University of Cologne & Institute of Geosciences, Bonn University

Julian.Steinheuer@uni-koeln.de

Create a stochastic model for wind gusts in different heights as a function of weather model predictions!

Method


Data

Wind gusts from the Hamburg weather mast (Lange 2014)

- in 5 levels (10m, 50m, 110m, 175m, 250m)
- for every 5 min from 2004 to 2014 ⇒ hourly gust
 maxima of 3 s duration

Hourly COSMO-REA6 data (Bollmeyer et al. 2015)

 \cdot in 40 levels and mast surrounding 25 columns

Extreme Value Theory: model 1 (layer-wise)

Generalized extreme value (GEV) family with cdf

$$G(z) = \exp\bigg\{-\big[1+\xi\big(\frac{z-\mu}{\sigma}\big)\big]_+^{-1/\xi}\bigg\},\,$$

and location $\mu \in (-\infty,\infty)$, scale $\sigma \in [0,\infty)$ and shape $\xi \in (-\infty,\infty)$.

•
$$P(FB_{alt} \leq z) \approx G(z; \mu, \sigma, \xi)$$
 with

$$\mu = \mu_0 + \mu_1 C_1 + \mu_2 C_2 + \mu_3 C_3 + \dots$$

$$\sigma = \exp(\sigma_0 + \sigma_1 C_1 + \sigma_2 C_2 + \sigma_3 C_3 + \dots)$$

$$\xi = \xi_0$$

- $C_i(t)$ from COSMO REA6 and identical in every altitude
- Penalized Maximum Likelihood Estimation (LASSO) in a cross-validation method on the years → 11 estimates

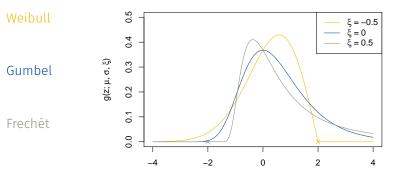
Model 2 (vertical model)

• use Legendre Polynomials:

$$P_0(x) = 1$$
, $P_1(x) = x$, $P_2(x) = \frac{1}{2}(3x^2 - 1)$ for $x \in [0, 1]$.

.....

• for x(10 m) = 0 and x(250 m) = 1:

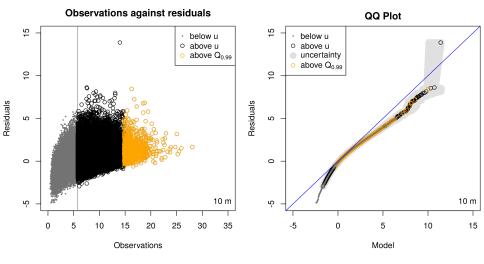

$$\mu(x,t) = \mu_{00}P_0(x) + \mu_{01}P_1(x) + \mu_{02}P_2(x) + [\mu_{10}P_0(x) + \mu_{11}P_1(x) + \mu_{12}P_2(x)]C_1(t) + \dots,$$

$$\sigma(x,t) = \exp(\sigma_{00}P_0(x) + \sigma_{01}P_1(x) + \sigma_{02}P_2(x) + [\sigma_{10}P_0(x) + \sigma_{11}P_1(x) + \sigma_{12}P_2(x)]C_1(t) + \dots).$$

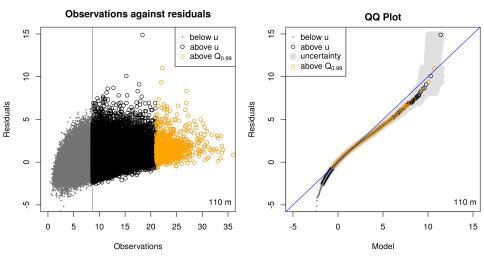
 \rightarrow enables prediction between layers (double cross-validation on years and levels)

• and fix $\xi = 0$.

Restriction on Gumbel distribution

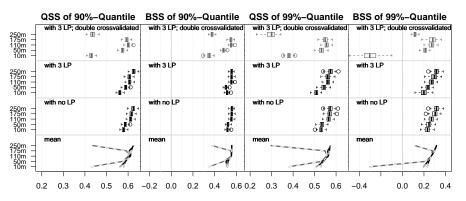

z

Results


LASSO selection

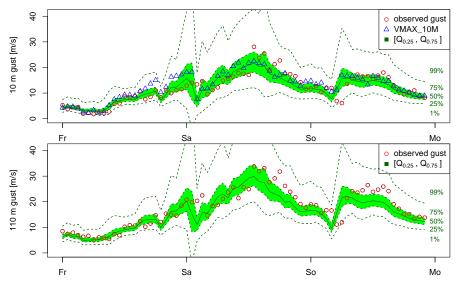
LASSO selection (×)	in	LP1 \sim const.		LP2 \sim lin.		LP3 \sim quad.	
Model covariates (grey)	for	μ	σ	μ	σ	μ	σ
Wind gust diagnostic in 10 m (VMAX_10M)		×	×				
Temporal variance (± 2 h) of VMAX_10M			×		×		
Barotropic mode of horizontal wind in mast layer	s	×		×			
Baroclinic mode of horizontal wind in mast layers	;		×	×			
Mean horizontal wind in 700 hPa		×	×	×			
SD of horizontal wind in 700 hPa							
Mean vertical wind in 700 hPa							
SD of vertical wind in 700 hPa			×				
Pressure tendency		×	×				
Lifted index			×				
Water content grid column		×					
SD of CAPE							
Diff abs. horizontal wind in 6 km and 1 km							
Temperature in 2 m							
Annual cycle			×				

Residuals in 10 m



Residuals in 110 m

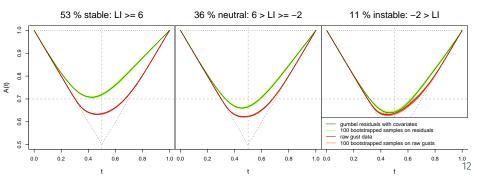
9


Verification: skill scores against layer-wise constant model

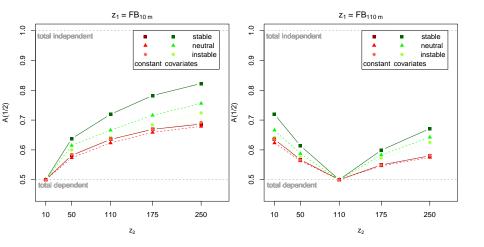
The quantiles correspond with increasing height towards thresholds $[ms^{-1}]$ of

10.3, 13.1, 14.4, 15.7, 16.9[90 %]14.8, 19.3, 21.0, 22.6, 24.0[99 %]

Example: Storm Emma



2008-02-29--2008-03-03


Dependency

Dependency function

- Non-parametric Pickands dependency function in the bivariate case (Pickands 1981) $A(t) = n \left[\sum_{i=1}^{n} \min(\frac{x_i}{t}, \frac{y_i}{1-t}) \right]^{-1} \text{ for } t = \frac{y}{x+y} \text{ with } X, Y \text{ Frechét}$
- Distinguish between stable and instable situations $t = \frac{F_{110\,m}}{F_{10\,m} + F_{110\,m}}$

Dependency function

- · the LASSO works for $\xi=0$
- some outlier in the residuals exists, but high gusts are captured
- gusts in interior layers can be predicted
- dependency between the layers can be reduced

Vertical profiles of wind gust statistics

from a regional reanalysis using multivariate extreme value theory

Julian Steinheuer, Sabrina Wahl and Petra Friederichs September 12, 2019

Institute for Geophysics and Meteorology, University of Cologne & Institute of Geosciences, Bonn University

Julian.Steinheuer@uni-koeln.de

References

Bollmeyer, C. et al. (2015). "Towards a high-resolution regional reanalysis for the European CORDEX domain". In: *Quarterly Journal of the Royal Meteorological Society* 141(686): 1-15. DOI: 10.1002/qj.2486.

- Lange, Ingo (2014). "Wind- und Temperaturdaten vom Wettermast Hamburg des Meteorologischen Institus der Universität Hamburg für den Zeitraum 2010 bis 2012". In: Persönliche Mitteilung vom 22.1.2014.
- Pickands, James (1981). *Multivariate extreme value distributions*. Proceedings of the 43rd Session.