The PRISTINE project: Polarimetric Radar simulations with realistic Ice and Snow properties and mulTI-frequeNcy consistency Evaluation

Davide Ori¹, Jana Mendrok², Ulrich Blahak², Stefan Kneifel¹ ¹University of Cologne, Germany, ² Deutscher Wetterdienst, Germany

Zdr

OBSERVATIONS

F1: Comparison of measured and simulated Zdr (EMVORADO, ICON model, T-matrix based)

- Radar forward operators have have problems reproducing the polarimetric radar observations - Mostly due to deficiencies in the T-matrix method for snow aggregates

3rd International Summer Snowfall Workshop

F3: Schematic evolution of the aggregation process. Riming works similarly. We can realize snowflake shapes modeling these processes

- NWP does not resolve snow shape - Lagrangian super-particle models (McSnow) provide more information such as number and shape of monomers, rime mass and melted fraction

- Single particle snow models simulate snow shapes to be used for scattering computations (DDA)

OUTLINE:

- Run McSnow to infer snow particle properties

2) Unresolved snow properties are statistically connected with model variables (temperature, supersaturation, cloud top temperature, ...)

IWSS3

gather.town

F5: Example multi-frequency and polarimetric spectral radar observations to be used for model evaluation (TRIPEx-pol)

Run ICON to generate atmospheric profiles to be used to initialize McSnow

Run snow aggregate simulator to generate snow shapes and perform scattering computations • Compare simulated spectral, multifrequency, polarimetric with TRIPEx-pol observations • Compile scattering LUTs for the forward modeling of ICON:

1) ensure consistency with ICON microphysical assumptions;

