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Severe thunderstorms are

expected to intensify as climate
change progresses.

 In the Alps the precipitation
modelling is biased due to the

orography.  

Low cloud
cover

convection

high-level
clouds

5. work plan

Fig. 4: Snapshots of 4 MSG channels (0.6, 6.2, 10.8 µm)
against rain rate map from the NIMROD dataset

during the July 2021 Germany Flood.

The feature space
represents
multidimensional
vectors of image
semantic properties,
derived from multi-
year satellite
observations.

Cloud classes
characterization with  
environmental
variables.

The ML framework will pinpoint the positions of
these case studies within the observation-based

feature space. Model effectiveness will be evaluated
based on how closely the identified locations align

with the actual cloud classes.

Approach 1

Characterize MSG channels

to identify optimal inputs for

the ML model.

Evaluate both single channels and

combinations, including cloud

products like optical thickness (COT),

against rain rate observations 

(Baur et al. 2023)

MSG/MTG brightness

temperature/reflectances and derived

products: ML training

ICON-GLORI Model Output: evaluation

European Severe Weather Database
(ESWD), radar and rain gauges data:

case studies selection

Environmental (ERA 5), Cloud (CM SAF)

and topography variables: cloud

classes characterization. 

low levels
clouds

Another feature
space is built based
on ensemble model
predictions and it is
directly compared

with the one
obtained from

satellite
observations

High-resolution model evaluation with self-supervised
neural network approach targeted on severe storms
over the Alps

Can cloud regimes in the model be

identified using a Machine
Learning (ML) framework?

Can the differences among the

cloud classes be quantified by

physical properties?

Are the cloud classes derived

from the model similar to the ones

derived from satellite

observations?

4. Datasets3. MacHiNE LEARNING Method

1. Motivation 2. Research Questions

Fig 1.b) Projected
changes (%) in 5-
year return value
of 1-day
precipitation event
during fall season
(Gobiet et al.,
2014). 

We adopt a self-supervised approach to classify clouds without the
use of labelled data. However, number of classes needs to be
optimised 

Fig 3.  Heavy rain events location from ESWD , ranging
from 01.01.21 to 31.10.2023 
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Fig 2. Architecture of self-supervised ML model adopted in Chatterjee et al., (2023).
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5. preliminary STEPs

Relevant case studies of extreme precipitation will be selected and
modeled to match the images used in training the ML model.

The feature space obtained can be used to evaluate the ICON-GLORI model
output in two different ways:

Approach 2

Fig 1.c)
Comparison of
observed and
simulated annual
rain rate
maxima at 1 h
duration (Dallan
et al., 2023)

Extreme weather events are a

serious public safety hazard

Fig 1.a) Total
economic loss per
sq. km caused by
weather-related
extreme events
in Europe (1980-
2020) [Daniell et
al. (2016)]

1.b)
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6. CLOUD CLassification
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Fig. 5: Feature space representation of cloud classes
derived from COT Images, visualized in 2D via t-

SNE. Source: Chatterjee et al. (2023).


