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TOSCA - ca Objectives and Instrumentation

= Snow is the predominant type of Active Sensors:

precipitation in sub-polar and polar 35.5 GHz Cloudradar (MIRA36)
latitudes and plays an important role in

the hydrological cycle. 24.1 GHz MicroRainRadar (MRR)

= No single instrument is solely capable ~ Passive Microwave Radiometers:
of describing the microphysical proper-  HATPRO (22-58 GHz): T/g-profile, liquid
ties of snow. water path (LWP), integr. water vapor (IWV)

> Integrate a number of state-of-the-art  ppR (90/150 GHz): sensitive to snow

remote sensing instruments => final  scattering; polarized receiver @150 GHz
goal: Develop a modular optimal-

estimation algorithm and evaluate the
potential for deriving columnar snow 2D-Video disdrometer (2DVD): particle
microphysics. size, shape, fall speed (from two cameras)

Statistical snow cloud properties

= TOSCA = Towards an Optimal estimation based Snowfall
Characterization Algorithm (funded by the German Science
Foundation DFG)

= Deployment of several active and passive remote sensing
instruments together with in-situ measurements during
winter 2008/2009 at an Alpine site:

= Environmental Research Station ‘Schneefernerhaus’ (UFS)
at 2650 m.a.s.l., 47° 25.0'N, 10° 58.9'E (~300m below the
Zugspitze summit)

= Dataset: Total of 1218 h of snowfall (i.e. 25% of the
campaign time) and ground temperatures below -5°C
(Léhnert et al., BAMS, 2010).

In-situ instruments:
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