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The Alps' severe thunderstorms are expected to intensify
as climate change progresses (Menegoz et al., 2020).
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Another feature space is built based on
ensemble model predictions and it is

directly compared with the one
obtained from satellite observations

(Baur et al. 2023)

5. work plan

EXPATS: High-resolution model evaluation with self-
supervised neural network approach targeted on
severe storms over the Alps

Can model performances be evaluated
using a Machine Learning (ML)

framework over complex terrain?

Are the cloud classes derived from the

model similar to the ones derived from

MSG/MTG observations?

Can the differences among the cloud

classes be quantified by physical cloud
properties?

MSG/MTG radiances,
products (COT): ML
training

ICON-GLORI Model
Output: evaluation

ESSL and rain gauges:
case studies
identification

Environmental data:
cloud classes
characterization. 

4. Datasets

 In the Alps the precipitation modelling is biased due to the
orography.  (Dallan et al., 2023).

3. MacHiNE LEARNING Method

1. Motivation 2. Research Questions

Fig 1.  a) Summer maximum
precipitation trends over the
period 1903-2010. (Menegoz et
al., 2020).  b) Comparison of
observed and simulated annual
rain rate maxima at 1 h duration
(Dallan et al., 2023)

We adopt a self-supervised approach to classify clouds: number
of classes needs to be optimised (Dwaipayan et al., 2023)

Fig. 5: a) Scatterplots illustrating the relationship between cloud
optical thickness and top pressure for various cloud classes. b)

Diurnal cycle patterns of cloud class occurrences. Analysis based
on 2015 COT data, sourced from Deneke et al., 2021.

Fig 3. a) MSG example image of 10.8 micron radiance, b)
Cloud optical thickness (COT), c) Heavy rain events

location from ESSL , ranging from 01.01.21 to 31.10.2023 
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Fig 2. Architecture of the Machine Learning model
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We identified four cloud type groups by clustering
classes with similar behavior in optical thickness
relative to cloud top pressure.

We examined the diurnal cycle, noting that high-
level clouds are present throughout the day,
whereas low-level clouds and those with low cloud
fraction peak around 11 AM, with convection also
evident in the early afternoon.
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6. preliminary results

The feature space is created exclusively
from the training of 1-year-long satellite

observations. Cloud classes are identified
and characterised using environmental

information. 

The feature space
obtained can be used
to evaluate the ICON-
GLORI model output in

two different ways:

Relevant cases studies
of extreme precipitation

will be identified and
reproduced by the

model. Then, the machine
learning framework will

determine the location of
these case studies within

the observation-based
feature space.

Model Evaluation Approach 1

OBS INPUT  
MSG/MTG images

feature space - obs based

MODEL INPUT  
ICON-GLORI

feature space - model based

Approach 2Observations Analysis

Analysis of the cloud classes obtained with the observation-based feature space


