Characterizing and correcting 'salt-and-pepper' noise in CLAAS-3 cloud mask product

Daniele Corradini¹, Claudia Acquistapace¹, Paula Bigalke¹, Elsa Cattani² ¹University of Cologne, Cologne, Germany ²CNR-ISAC, Bologna, Italy

EUMETSAT

Resolution:

0.04° x 0.04°,

1 day

The HSAF SE-E-

SEVIRI (H10) snow

cover product

HSAF

IYDROLOGY AND WATER

UNIVERSITÄT ZU KÖLN

2. VALIDATION DATASETS

EUMETSAT **CMSAF CLAAS-3**

Resolution: 0.04°x0.04°, 15 min

The CMA flags for retrieval accuracy, surface categories, processing and geophysical conditions.

The cloud top pressure (CTP) and cloud optical thickness (COT) products

MODIS

Resolution: 1 km x 1 km,5-9 overpasses per day

The MODIS Cloud Mask (MYD35_L2) products from Aqua

All The datasets cover April to September 2013 within the Alpine domain (5°E–16°E, 42°N–51.5°N).

3. CLOSING ALGORITHM

Original CMA

Dilation

Erosion

Fig. 3: (a) Simplified example of closing algorithm with 3x3 structure (red square). (b) Application on CMA

4. MODIS COMPARISON

CMSAF

istribution	of ET	S Acros	s Closing	Structures

5. QUALITY FLAGS

Retrieval accuracy is labelled 'Good' for all closed points, which are more common at **night**, **twilight**,

over land with rough/high terrain, snow-covered areas, and uncategorized surface conditions.

Fig. 5: Condition (a) and status (b) flag distribution for closed pixels using a 3x3 structure compared to all pixels.

7. CONCLUSION

- CMA frequently exhibits salt-and-pepper noise, **present**
- in ~65% of the dataset, which may impact DL computer
- vision model training.
- Noisy pixels are associated with good quality flags.

3x3 Closing

Fig 4: (a) Confusion matrix comparing CMSAF cloud mask predictions with MODIS reference. (b) ETS distribution across overpasses for different closing structures. (c) Confusion matrix values before and after closing for one overpass.

6. CLOSED PIXELS CHARACTERIZATION

- Fig 6: Distribution of closed pixels by month (a) and hour (b), normalized by the total number of pixels available for each month or hour.

Increased closed pixels in **April** may result from extended snow cover, as indicated by the HSAF product. Peak in closed pixels observed around **4 AM (UTC)**, during twilight

Fig 7: Blue bars show the distribution of closed pixels across HSAF categories, normalized by the total closed pixels. Orange bars represent the #SAF category distribution for all pixels.

- 0.004 0 0.003 5 0.002 0.001 CTP (hPa Fig. 8: Heatmap showing the values of closed pixels for CTP and COT, with interpolation applied using neighboring points. Closed pixels are mostly related to **thin**

clouds, with both low and mid-level CTP

- Slightly correlated with **snow-covered areas** and more common during **nighttime** and **twilight**.
- Represented by **thin clouds** that are typically harder to detect.
- The closing algorithm, besides reducing the noise, it closes more points classified as clear than cloudy, according to MODIS.
- The **3x3 closing structure** provides the best alignment

with the MODIS cloud mask since it **maximizes ETS.**

- K.-G, Karlsson & Johansson, Erik & Håkansson, Nina & Sedlar, Joseph & Eliasson, Salomon. (2020). Probabilistic Cloud Masking for the Generation of CM SAF Cloud Climate Data Records from AVHRR and SEVIRI Sensors. Remote Sensing. 12. 713. 10.3390/rs12040713.
- Meirink, Jan Fokke; Karlsson, Karl-Göran; Solodovnik, Irina; Hüser, Imke; Benas, Nikos; Johansson, Erik; Håkansson, Nina; Stengel, Martin; Selbach, Nathalie; Schröder, Marc; Hollmann, Rainer (2022): CLAAS-3: CM SAF CLoud property dAtAset using SEVIRI Edition 3, Satellite Application Facility on Climate Monitoring, DOI:10.5676/EUM_SAF_CM/CLAAS/V003.
- Ackerman S. A., and R. Frey, 2015: MODIS Atmosphere L2 Cloud Mask Product (35_L2). NASA MODIS Adaptive Processing System, Goddard Space Flight Center http://dx.doi.org/10.5067/MODIS/MYD35_L2.006 (Aqua).
- EUMETSAT H-SAF. Product User Manual (PUM) for Product H10–SN-OBS-1; Doc. No. SAF/HSAF/PUM-10/1.2; Issue/Revision Index: 1.2; EUMETSAT: Darmstadt, Germany, 2018. Product downloaded from: https://hsaf.meteoam.it/Products/Detail?prod=H10
- Closing algorithm from the python library scipy: https://docs.scipy.org/doc/scipy-1.15.0/reference/generated/scipy.ndimage.binary_closing.html

contact: dcorrad1@uni-koeln.de

