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ABSTRACT

A method for combining ground-based passive microwave radiometer retrievals of integrated liquid water
(LWP), radar reflectivity profiles (Z ), and statistics of a cloud model is proposed for deriving cloud liquid water
profiles (LWC). A dynamic cloud model is used to determine Z–LWC relations and their errors as functions of
height above cloud base. The cloud model is also used to develop an LWP algorithm based on simulations of
brightness temperatures of a 20–30-GHz radiometer. For the retrieval of LWC, the radar determined Z profile,
the passive microwave retrieved LWP, and a model climatology are combined by an inverse error covariance
weighting method. Model studies indicate that LWC retrievals with this method result in rms errors that are
about 10%–20% smaller in comparison to a conventional LWC algorithm, which constrains the LWC profile
exactly to the measured LWP. According to the new algorithm, errors in the range of 30%–60% are to be
anticipated when profiling LWC. The algorithm is applied to a time series measurement of a stratocumulus layer
at GKSS in Geesthacht, Germany. The GKSS 95-GHz cloud radar, a 20–30-GHz microwave radiometer, and a
laser ceilometer were collocated within a 5-m radius and operated continuously during the measurement period.
The laser ceilometer was used to confirm the presence of drizzle-sized drops.

1. Introduction

Clouds play a very important role within the hydro-
logical cycle. The distributions of hydrometeor phase
and size within clouds are important factors in the de-
velopment of precipitation. Thus, the predictability of
precipitation in numerical weather forecast models also
depends on the correct description of liquid water con-
tent of developing clouds. The parameterization
schemes used in state-of-the-art weather forecast models
have large uncertainties and are not capable of describ-
ing actual cloud dynamics on scales that are significant
for the formation of convection. One reason for this
deficiency is that up to now, no appropriate datasets of
microphysical cloud variables have been recorded due
to restrictions in measurement capabilities. In the past,
sporadic in situ aircraft measurements have been the
only reliable method. Ground-based passive microwave
measurements have proven to be quite accurate for de-
termining integrated cloud liquid water (LWP; West-
water 1978; Peter and Kämpfer 1992), but retrieving
the vertical distribution of cloud liquid water (LWC)
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from brightness temperature (TB) measurements is very
uncertain because the problem is underdetermined. A
possibility is to combine active and passive microwave
components to infer LWC profile information. In the
last 5 to 10 years, active and passive ground-based mi-
crowave technologies have been developed for moni-
toring clouds in a quantitative way (Solheim et al. 1998;
Clothiaux et al. 1995). Modern cloud radars have suf-
ficiently high sensitivities to quantify radar reflectivity
(Z), Doppler velocity, and polarimetric qualities of
clouds. High spectral, spatial, and temporal resolution
allow the development of new techniques, which can
help to quantify cloud microphysics at finer scales than
before. In this study the Forschungszentrum Geesthacht
GmbH (GKSS) 95-GHz radar was used together with a
radiometer suited to measure the liquid water path with
an accuracy of 10%–30%. The combination of both in-
struments is necessary to constrain the inherent ambi-
guity of the radar measurements due to the variations
of the cloud drop size distribution (DSD).

In the idealized case of Rayleigh backscattering, Z is
equal to the sixth moment of the cloud droplet distri-
bution. Since LWC is proportional to the third moment
of the DSD, varying DSDs cause large variations in the
relationship between Z and LWC. For example, if a
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TABLE 1. Mean values (Mean) and standard deviations (Std) of the
modeled LWC (g m23) in 625 m above cloud base, and Bias and rms
errors of the Z–LWC relation with Bias(corr) and rms(corr) denoting
the bias corrected version of the Z–LWC relation. All errors as func-
tions of the different dBZ classes (Fig. 3).

dBZ Class Mean Std Bias Rms
Bias

(corr)
Rms
(corr)

Class A
Class B
Class C
Class D
Class E
All classes

0.063
0.219
0.551
0.633
0.611
0.264

0.033
0.134
0.238
0.300
0.325
0.238

20.018
20.106
20.255

0.316
1.839

20.066

0.032
0.148
0.341
0.526
2.005
0.325

0.005
20.038
20.163

0.025
0.639

20.047

0.027
0.094
0.279
0.298
0.736
0.150

volume of 1 m3 contains 0.1 g of liquid water and only
droplets 5 mm in radius, the reflectivity will be 8 times
smaller than if the volume consists only of droplets 10
mm in radius. A very challenging problem in deriving
cloud liquid water is the presence of drizzle drops (50–
400 mm in radius), which evaporate on their way to the
ground and hence cannot be perceived as precipitation
on the ground. These droplets frequently have high con-
tributions to Z but do not necessarily contain consid-
erable amounts of LWC (Fox and Illingworth 1997a).

In past years many attemps have been made to relate
cloud radar reflectivity factor measurements to micro-
physical cloud properties such as liquid water content,
effective radius (reff), or total number concentration
(Ntot). Sauvageot and Omar (1987) developed a univer-
sal Z–LWC relationship for non- or very weakly pre-
cipitating cumulus clouds. In situ aircraft measurements
of drop size distribution were used to calculate Z. Here
an upper limit of 215 dBZ was set to the validity of
the relationship, because no clear correlation was found
for higher reflectivities. This was interpreted as the limit
between nonprecipitating and precipitating clouds. Fox
and Illingworth (1997b) developed empirical Z–LWC
relationships for stratocumulus clouds also based on in
situ aircraft measurements. They proposed to distinguish
between clouds with and without occasional drizzle ac-
cording to the form of the vertical Z profile. Errors are
estimated to be 50% for a single retrieval of LWC for
a nondrizzle cloud. Liao and Sassen (1994) used the
output of a one-dimensional diffusional growth cloud
model to simulate radar reflectivities from predicted
droplet spectra. They found that the Z–LWC relationship
was mainly dependent on the activated cloud conden-
sation nuclei (CCN) concentration, which is equal to
Ntot in their model. In comparison with empirical based
relationships for cumulus and stratocumulus clouds the
best agreement was found for Ntot of about 100 cm23.
Vivekanandan et al. (1997) used a radar–radiometer
combination to derive Z–LWC relationships. They used
a gamma function to describe the relationships between
Ntot , LWC, Z, and the median diameter Dm. In a first
step the radiometer derived LWP was used to determine
a constant Dm profile as a first guess. Then equations
for Z and LWC were iterated in Dm and Ntot to find an

LWC profile corresponding best to the measured LWP.
The upper value for Dm was set to 100 mm. Frisch et
al. (1995) have developed a combined radar–radiometer
LWC profile retrieval algorithm for stratus clouds,
where the retrieved LWC is constrained exactly to the
observed LWP. Typical DSD parameters for stratus
clouds are incorporated.

Here a method is proposed to combine LWP, Z profile,
and an LWC model climatology in an optimal way to
obtain the LWC profile. If xi denotes a scalar measure-
ment with variance , then m independent measure-2s i

ments can be combined to

21m m

2 2x̂ 5 1 s (x /s ) , (1)O Oi i i1 @ 2 [ ]i51 i51

x̂ yielding an optimal estimator for x. This method is
called inverse variance weighting or optimal estimation
(OE; Rodgers 1976). For profile retrieval, xi will be a
measurement vector and the error covariance matrix.2s i

Since no direct measurements of LWC can be obtained,
the inverse of a forward model function F is used to
convert measurements yi into the space of x. Virtual
measurements (e.g., a model climatology) of x can be
used as an xi as long as its variance (covariance matrix)

is known.2s i

The paper is structured as follows. Section 2 describes
the forward model function F and the model climatol-
ogy. A dynamic cloud model with a resolved liquid
cloud droplet spectrum is used. The model is initialized
with radiosonde observations to account for realistic
atmospheric conditions (sections 2a, b). Then the model
output is used to derive both the Z–LWC relations and
the LWP retrieval algorithm from simulated passive mi-
crowave measurements. The formulation for F is given
in section 2e. Attenuation of the radar beam due to
hydrometeors is taken into account and a method is
proposed to correct for attenuation (sections 3a, b). Sec-
tion 4 gives an introduction to the theory of optimal
estimation (section 4a). The application to the combi-
nation radar–radiometer–cloud model is described in de-
tail in section 4b. Here it is shown how the covariance
matrices needed for a vector formulation of (1) are con-
structed. In section 5 the proposed retrieval method is
applied to independent model data and compared with
a standard retrieval method. The applications of the al-
gorithm to real data is shown in section 6. First, the
instruments used to measure a time series of Z profiles
and LWP are described (sections 6a, b). Then, the char-
acteristics of the day of measurement (section 6c), and
finally the LWC retrieval (section 6d) are discussed. The
paper concludes with a summary and a description of
further extensions of measurement combination using a
highly sophisticated multichannel microwave radiom-
eter.
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2. Derivation of the forward model function and
model climatology

In this section the forward model function F is de-
rived, which combines the Z–LWC relation and the re-
trieved LWP. Here, F will be of the general form

y 5 F(LWC), (2)

with y denoting the measurement vector consisting of
the Z profile from the cloud radar and the corresponding
LWP derived from the radiometer measurements. A 1.5-
dimensional time-dependent convective cloud model
(Issig 1997) is used to simulate the dependencies be-
tween Z and LWC. The model is also used to develop
a linear retrieval for LWP from simulated passive mi-
crowave brightness temperatures. The mean of the mod-
eled LWC is used as the cloud climatology. For ini-
tialization the model requires vertical profiles of tem-
perature, pressure, and humidity. To include all kinds
of weather conditions, 6 yr of daily (1200 UTC) radio-
sonde data from the time period between 1984 and 1992
are used from the station Essen of the German Weather
Service. The data are devided into three sets. The
TRAIN (training) dataset encompasses the years 1984,
1986, and 1988. The corresponding model output data
are used to derive the algorithms. The TEST (testing)
dataset is comprised of the 1990 data, and the model
statistics based on TEST are used to determine the co-
variance matrices. The 1992 dataset GENE (general-
ization) was used to evaluate the algorithms.

a. Cloud model description

The cloud model (Issig 1997) predicts liquid drop
size spectra for 40 logarithmically scaled radius inter-
vals with 250-m vertical resolution. Droplet sizes range
from 1 to 104 mm. For each droplet class a prognostic
mass budget equation is solved including detailed mi-
crophysics such as diffusion, coagulation, and break up.
Further prognostic equations yield vertical velocity,
temperature, water vapor, and ice phase. All equations
include a vertical advection term, a formulation for the
entrainment, and a microphysical term. The vertical ve-
locity equation additionally includes the buoyancy term.
The entrainment term describes the interaction between
the cloud and its surrounding environment. The ice
phase is parameterized in bulk form according to van
der Emde and Kahlig (1989) and is considered to consist
of ice and graupel. In 1.5 dimensions the cloud is per-
ceived as a cylinder with a radius rc and no variations
in azimuth direction. Inside the cylinder the variables
are height- and time-dependent, whereas the variables
of the surrounding are maintained constant in a stable
cloud-free atmosphere. Convection is initialized by re-
alistic diabatic processes via a radiation module. A typ-
ical CCN spectrum for land conditions was chosen ac-
cording to empirical results from Pruppacher and Klett
(1997). At the ground, the initial total number concen-

tration of CCN is set to 1000 cm23 decreasing expo-
nentially to 100 cm23 5 km above ground. Then the
total number concentration of CCN is held constant up
to the model top height at 10 km.

b. Model evaluation

The radiosonde ascents from TRAIN, TEST, and
GENE are used to initialize the cloud model. The prog-
nostic variables are simulated in 40 heights. Results are
recorded every 40 s for a duration of 2 h after initial-
ization. For each time step, and in each height the sixth
moment of the drop size distribution is calculated, which
is equivalent to Z in the Rayleigh approximation. To
reduce the data volume, only those cases are considered
where two time steps differ by more than 30 g m22 in
LWP. These time steps are examined in each height for
the presence of clouds, which are assumed to be present
if a threshold of 0.005 g m23 is exceeded. To exclude
raining clouds, profiles with droplets larger than 400
mm in radius contributing more than 240 dBZ are ex-
cluded. Thus, occasional drizzle cases produced by the
model are included in the statistics. These are here de-
fined by a dBZ contribution in the radius interval [50,
400] mm being larger than 240 dBZ. After a model
time of 4000 s about 10% of the evaluated cases show
drizzle, which, however, only contributes about 0.5%–
4% to the total LWP. Following reasons of simplicity,
the ice phase is neglected in all cases and does not
contribute to the calculated radar reflectivity. Thus, the
algorithm is only applicable to cases free of ice. Figure
1 shows the mean development of the simulated clouds
in time in terms of LWP. As expected for these non-
precipitating clouds, the maximum value of LWP is
reached in a very early phase of cloud development,
corresponding to the maximum values of upward ver-
tical velocity. Figure 2 indicates the mean model LWC
profiles and their standard deviations of four different
vertical extensions.

An essential demand the model should meet is a cor-
rect description of the natural mean and variability of
the LWC profile. This is important for the LWC algo-
rithm presented in section 4 since the mean LWC profile
and its variance is used as a week constraint. Due to
the lack of long-term in situ LWC profile observations,
a comparison between cloud model LWC and an em-
pirically modified adiabatic method (Karstens et al.
1994) for determining LWC in defined cloud boundaries
was carried out. Results show that the mean LWC of
the modified adiabatic method lies within one standard
variation of the mean model profiles (Fig. 2) for clouds
with vertical extensions from 500 to 1500 m. Addi-
tionally we checked LWC profiles derived from single
in situ DSD measurements and found good agreement
with the model climatology. These results indicate that
the cloud model decribes the LWC climatology fairly
well.
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FIG. 1. Mean time series of cloud development. Top: mean LWP (solid line) and LWP standard
deviation (dashed). Bottom: mean vertical velocity w (solid), standard deviation of w (dashed)
and, minimum and maximum values of w (dashed–dotted), respectively.

FIG. 2. Mean LWC profiles (thick line) and the corresponding 1-
s range (gray shaded). (a)–(d) show LWC profiles for different cloud
vertical extension; N depicts the number of profiles used.

c. Z–LWC relations

The vertical coordinate used to describe the depen-
dencies of LWC and Z with height is height above cloud
base. The typical form relating Z to LWC is a power-
law equation of the form

bZ 5 aLWC (3)

(e.g., Sauvageot and Omar 1987; Fox and Illingworth
1997a). The errors when estimating LWC with this

equation can be in the range of 1 order of magnitude
or more due to variations in the droplet spectrum. To
illustrate the sensitivity of (3), the lognormal size dis-
tribution, often used to characterize cloud and rain dis-
tributions (e.g., Feingold et al. 1997), is used:

2N (lnr 2 lnr )tot 0N(lnr) 5 exp 2 . (4)
21 22sÏ2ps ll

The three parameters describing this DSD are sl (log-
arithmic width), r0 (modal radius), and Ntot (total number
of drops per unit volume). It can be shown that (3) will
be exactly satisfied if two of the three DSD describing
parameters in (4) are held constant (Erkelens et al.
1998). In the three possible cases, the exponent b will
vary between 1 and 4 giving rise to a wide range of
variability. LWC derived from a typical cloud reflectiv-
ity value of 235 dBZ will vary in one order of mag-
nitude if the exponent b is varied between 1 and 4.

To determine the coefficients a and b from the model
simulations (3) is logarithmized to

dBZ 5 10 loga 1 10b logLWC, (5)

with dBZ 5 10 log(Z/Z0), whereby Z0 is given by 1
mm6 m23. Subsequently, in each 250-m height interval
above cloud base, a weighted linear regression of (5) is
performed. This means that before the regression is per-
formed, each (dBZ, LWC) pair is classified into one of
five dBZ classes (A–E). The regression is performed
with an equal number of (dBZ, LWC) pairs from each
class. Every pair of the class with the minimal number
Nmin of pairs is taken into the regression, whereas Nmin

(dBZ, LWC) pairs from the other classes are randomly
chosen. To perform a representative regression Nmin

should at least be equal to 20. This condition could be
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FIG. 3. Scatterplots in 625 m above cloud base. (a) Z–LWC dependency and (b) retrieval
accuracy with a derived Z–LWC relation. The vertical lines depict the different dBZ classes.

satisfied up to a height of 1500 m above cloud base for
the cloud-model results obtained from the TRAIN da-
taset. Performing a linear regression with (5) leads to a
much stronger weighting of very small values of LWC
than larger values due to minimizing the error between
dBZ and log(LWC). This results in an almost bias-free
determination of LWC in dBZ class A (Fig. 3, Table 1)
but increasing absolute biases in classes of higher dBZ.
The bias in class E is particularly high. This can be
explained by large droplets contributing to high reflec-
tivities but not increasing the mean LWC to values sig-
nificantly larger than those in the classes C and D. This
behavior of LWC over- and underestimations is used to
derive a bias corrected Z–LWC relation (Table 1).

Values of the coefficient b derived from the cloud
model are in the range of 1.85 to 2.58, whereas a ranges
from 0.02 to 0.16. These coefficients are in good agree-
ment with values derived by Sauvageot and Omar
(1987) from aircraft measurements of DSDs in a variety
of cumulus, stratocumulus and stratus clouds. The co-
efficients a and b needed for (3) were created using the
TRAIN dataset. The coefficients are derived as functions
of height above cloud base and cloud thickness. The
rms errors when applying the derived coefficients to the
independent TEST dataset are used to derive the co-
variance matrices in section 4b.

d. LWP retrieval

In this work a simple statistical algorithm is devel-
oped to retrieve LWP from TB’s measured at 21.3, 23.8,
and 30.7 GHz. Water vapor and liquid water absorption
are dominant at these frequencies with the latter being
proportional to the third moment of the DSD. Generally
a 20–30-GHz combination is necessary to retrieve LWP
to separate the emission effects of water vapor (ab-
sorption line at 22.235 GHz) and cloud liquid (atmo-
spheric window in the 30-GHz region). The algorithm
relies on the same cloud-model profiles of temperature,
pressure, humidity, and cloud liquid water as used to

obtain the statistics of the Z–LWC relationship (section
2c). The TRAIN dataset is used to derive a linear re-
lationship between the measured brightness tempera-
tures and LWP. A simple orthogonal regression is per-
formed to derive the coefficients l0, l1, l2, l3 of the
relation

LWP 5 l 1 l TB 1 l TB 1 l TB ,0 1 21 2 23 3 31 (6)

with l0 5 20.267, l1 5 0.022, l2 5 20.029, and l3 5
0.027. Since LWP algorithms for passive microwave
measurements tend to get very inaccurate when LWP
is larger than 1.0 kg m22 due to large fractions of rain
water (Karstens et al. 1994), only those time steps were
included in the statistics when LWP was less than 1.0
kg m22. To simulate the TBs from the cloud-model pro-
files, gaseous absorption (H2O, O2) is calculated ac-
cording to Liebe et al. (1993), whereas absorption and
scattering coefficients due to hydrometeors are calcu-
lated according to Lorenz–Mie theory. The forward ra-
diative transfer is calculated using the microwave ra-
diative transfer model (MWMOD; Simmer 1994), which
solves the atmospheric radiative transfer equation
(ARTE) with the ‘‘successive order of scattering’’ meth-
od. When performing the regression, the TBs are subject
to Gaussian noise corresponding to the measurement
error (section 5b) to simulate real conditions. This leads
to a modeled relative error of about 10% in LWP. The
errors when applying this algorithm to the TEST dataset
are also included in the covariance matrices in section
4b.

e. Formulation of the forward model function

Now two conditions which the forward model func-
tion F should meet can be stated. The first l elements
of F (corresponding to l height dependent Z–LWC re-
lations) should fulfill

dBZ 5 10 loga 1 b logLWC ,i i i i (7)

with i denoting the height index (i ∈ [1, l]). Then as a
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FIG. 4. Hydrometeor attenuation effects at 95 GHz of a liquid water
cloud of 1000-m vertical extension (constant LWC with height); (a)
dBZ reduction (two-way attenuation) at cloud top assuming a cloud
temperature of 08C, and (b) relative LWC error due to attenuation
on a standard Z–LWC relation (a 5 0.01, b 5 2).

second condition, the last element of F should constrain
the retrieved (integrated) LWCi measurements to the
liquid water path as

l

LWP 5 (LWC )Dz, (8)O i
i51

where Dz 5 250 m is the vertical model resolution. The
measurement vector y is defined as (dBZ, LWP), where
dBZ denotes the measured radar reflectivity vector and
LWP the liquid water path derived from the TB mea-
surements (6). If F in (2) is simplified to a linear problem
by means of a Taylor series around a guessed LWCn

vector, then y can be written as

]F
y 5 F(LWC ) 1 (LWC 2 LWC )n n]LWC

21 O(LWC 2 LWC ) , (9)n

or, by redefining some of the symbols and omitting high-
er-order terms,

y 5 y 1 K (LWC 2 LWC ),nn n (10)

with Kn denoting the Jacobi matrix of the problem. Due
to the errors in the LWP retrieval, errors in the Z–LWC
relation, attenuation errors (section 3), and measurement
errors, (10) will never be fulfilled exactly. This error
can be minimized, however, by the OE method (section
4).

3. Attenuation

When dBZ profiles at 95 GHz are interpreted to derive
cloud microphysical properties, attenuation due to hy-
drometeors has to be accounted for.

a. Simulation of attenuation

Figure 4a shows hydrometeor attenuation effects at
cloud top for a cloud consisting of liquid drops and a
thickness of 1000 m. Because of the temperature de-
pendence of attenuation, the curve may vary within a
range of 1 dBZ. This variability can be accounted for

if, for example, the cloud-base temperature is inferred
from an infrared radiometer. Since this type of mea-
surement was not given during the measured time series,
all clouds are assumed to have a constant temperature
of 08C. The total opacity of the cloud was calculated
using the Rayleigh approximation. According to Fig.
4a, a cloud containing 0.4 kg m22 of liquid water ex-
periences a dBZ reduction of about 4 dBZ at cloud top
(two-way attenuation) causing a relative error of 50%
in LWC at cloud top (Fig. 4b).

b. Correction for attenuation

If absorption can be described by the Rayleigh ap-
proximation, k is related linearly to LWC (Ulaby et al.
1981):

k 5 c(T, l )LWC,0 (11)

with c a constant depending on the physical temperature
T of the cloud, and the radar wavelength l0. As before,
all clouds are assumed to have a mean temperature of
08C. The total optical depth tcloud of a cloud layer is
given by

z top

t 5 k(z) dz. (12)cloud E
zbase

The reflectivity factor Ztop, originating from cloud top,
attenuated by the water cloud, will then be observed as

Z 5 Z exp(22t )at top cloud (13)

at the radar site. With the assumption that Z measured
in the lowest cloud level is not attenuated, k can be
calculated using (11) and (3)

1/bk(z ) 5 c(T, l )[Z(z )/a] .base 0 base (14)

Now the optical depth of the lowest layer can be cal-
culated and, consequently, the corrected reflectivity of
the second layer can be computed by using an equation
of the form of (13). This process can be repeated up to
the cloud top in order to provide the complete Z profile
corrected for attenuation. To simulate measured radar
data, the model results of Z of the TEST dataset are
analytically attenuated with an exponential relation as
in (13). The term tcloud can be calculated using the model
output data. Then the attenuated Z profiles are ‘‘de’’-
attenuated by using the method described above. The
rms errors of the deattenuated Z values are at maximum
about 3 dBZ at cloud-top height for clouds with vertical
extension of 1500 m. Most of this error is due to the
bias in the region of dBZ values larger than 220 where
errors of up to 215 dBZ are possible. In this region of
larger optical depths the attenuation correction can be-
come unstable and should be regarded with care. For Z
# 220 dBZ the derived errors can then be interpreted
as measurement errors and are included in the covari-
ance matrices derived in section 4.
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FIG. 5. Errors (rms, relative, bias) of different LWC retrievals in dependence of height above
cloud base. Diamonds: optimal estimation with inclusion of the a priori profile; stars: optimal
estimation without the a priori profile; triangles: method according to Frisch et al. (1998).

4. Retrieval technique

In this section the retrieval technique for LWC pro-
files is presented. First, the theory of optimal estimation
is introduced following Rodgers (1976). The OE method
is often used to retrieve temperature or humidity profiles
from multispectral remote sensors (e.g., Ma et al. 1999).
Subsequently, it is shown how this technique can be
adapted to retrieve LWC profiles from a combination
of a model climatology, Z measurements, and LWP mea-
surements.

a. Optimal estimation

One major problem of remote sensing is the inversion
of the atmospheric radiative transfer equation. Although
forward calculations of atmospheric radiative transfer
(i.e., calculation of radiances from the known atmospher-
ic state) can be performed quite accurately, the inversion
(even of the linearized ARTE) is complicated because a
continuous profile of an atmospheric quantity is desired,
whereas only a limited number of often highly correlated
observations is available. This leads to an underdeter-
mined problem, meaning that an infinity of solutions ex-
ists. As a consequence, profiles which are to be retrieved
have to be discretizised and combined with other inde-
pendent measurements. If additional measurements are
not available the measurement vector and its covariance
can be combined with a so-called virtual measurement
(e.g., the information content contained in the climatol-
ogy of the desired parameter, here the so-called a priori
information). This combination will decrease the number
of degrees of freedom of the problem and lead to a so-
lution partially constrained by the climatological mean.
If there are m independent measurements yi with i ∈ [1,
m] and x denoting the unknown profile, a linear version
of the ARTE can be written as

y 5 K x,ii (15)

where Ki denotes the linear forward function of radiative
transfer. The most likely value of x given the measure-
ments yi can be calculated by maximizing the condi-

tional probability function P(x | y1, y2, . . . , ym) with
P(x) defined as

1 1
T 21P(x) 5 exp 2 (x 2 x ) S (x 2 x ) ,0 0m /2 1/2 [ ](2p) det(S) 2

(16)

with x0 denoting the expected value of x, E[x] and S
the covariance matrix S 5 E[(x 2 x0)(x 2 x0)T]. Ap-
plying Bayes’ theorem and maximization leads to the
set of the optimal estimation equations yielding the op-
timal solution

21m m

T 21 T 21x̂ 5 K S K K S y (17)O Oi i i i i i1 2 1 2i51 i51

and its covariance Ŝ

21m

T 21Ŝ 5 K S K . (18)O i i i1 2i51

Here, Si represents the covariance matrix of the mea-
surement vector yi. If the error statistics are assumed to
be Gaussian, x̂ corresponds both to the maximum like-
lihood and the expected value solution.

b. Application to combined radar–radiometer
measurements

The radar equation valid for meteorological targets
(Ulaby 1981) is also a type of ARTE. One can calculate
the power backscattered to the radar receiver Pr if trans-
mitted power, antenna gain, wavelength, and the at-
mospheric composition (i.e., hydrometeors, gases, and
temperature) are known:

C
P 5 s exp(22t) (19)r y2R

with R denoting the range to the scattering volume, t
the opacity, and sy the radar cross section of the scat-
tering volume, the latter two resulting from the atmo-
spheric composition. Here, C is the radar constant and
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a function of transmitted power, antenna gain, and wave-
length. If the backscattering process can be described
in terms of Rayleigh scattering, and with the radar re-
flectivity factor defined as

6Z 5 N(D )D , (20)O i i
i

with N denoting the number of drops per unit volume
and Di the cloud-drop diameter, sy can be expressed as

564p
2 6s 5 |K| N(D )D , (21)Oy i i4l i0

with K a complex quantity dependent on the complex
index of refraction of water. Combining (19), (20), and
(21), one can write

Pra (2t )Z 5 e , (22)
C9

with C9 denoting a modified radar constant. The R2 de-
pendency is eliminated by multiplying (19) with R2,
which can be determined by the time difference between
the transmitted and received radar pulse. Consequently,
Pra is the so-called range-adjusted power PrR2.

Equation (3) can also be regarded as a simplified
ARTE. Together with LWP measurements from the mi-
crowave radiometer and an a priori climatology from
the cloud model, the OE retrieval method can be applied.
In the following the measurement vector y as described
in (10) will now be denoted by y1. Further information
is included by taking as a second measurement vector
y2 as the mean model profile climatology of LWC de-
rived from the TEST dataset. The inverse error covari-
ance weighting method will lead to a solution for the
LWC profile, which will satisfy the forward function F
within its errors as stated in section 2e. Additionally,
the LWC retrieval is constrained to the model clima-
tology y2 taking into account its variance. Thus, the
problem consists of two independent measurements that
are to be combined. The radiative transfer model
MWMOD (Simmer 1994) and the cloud model (Issig
1997) are used to derive the two covariance matrices
S1 and S2 needed in our case. Covariance matrix S2

consists of the LWC covariances of the mean model
profile derived from the TEST dataset. In this case, K2

will be the identity. Covariance matrix S1 is a matrix
containing four independet error types. First, the ab-
solute accuracy of the radar (3 dBZ; Danne et al. 1999)
is considered by adding Gaussian noise with 3-dBZ stan-
dard deviation to the model dBZ. Also, the estimated
LWP retrieval error is taken into account (section 2d).
Errors due to the correction for hydrometeor attenuation
can be interpreted as a measurement error and are also
included in S1. The radar reflectivities calculated from
the cloud model are attenuated according to (13). Then
the correction for attenuation as described in section 3b
is applied to estimate the error. Since the optimal esti-
mation equations do not explicitly include the forward
model error due to the assumed Z–LWC relation, this

error has been included in S1 in form of an equivalent
error in dBZ. The matrix S1 is calculated as a full matrix,
that is, taking into account the correlations between all
described errors. This will also smooth the LWC profile.
Separate a priori profiles (Fig. 2) and covariance ma-
trices were calculated for different vertical thicknesses
of modeled clouds. This was done to create represen-
tative a priori LWC profiles, since the number of thin
clouds in the model climatology dominates the number of
thick clouds. Due to the nonlinearity of the problem y1 is
written according to (10):

y 5 y 1 K (LWC 2 LWC ).1,n1 1,n 1,n (23)

Solving for Kn LWC and taking the model climatology
y2 (equal to LWC2) into account leads to the following
[if (17) is used as an analogon]:

2121 T 21LWĈ 5 (S 1 K S K )2 1,n 1 1,n

T 213 {K S (y 2 y 1 K LWC )1,n 1 1,n1,n 1,n

211 S LWC }. (24)2 2

This equation can now be iterated in n taking
as LWC1,n11 until covergence is reached. TheLWĈ

covergence criterion used here was 0.001 g m23 in all
layers. The final product is an LWC profile at all heights,
where the measured or modeled radar reflectivity has a
significant value above the radar detection limit.

5. Retrieval accuracy

In Fig. 5 the results obtained with the OE algorithm
with the inclusion of the a priori profile (OE-ap) and
without (OE-pure) are shown. Also an algorithm ac-
cording to Frisch et al. (1998) is considered for com-
parison purpose. This algorithm is based on a power-
law relation, which adjusts the coefficient a according
to the measured LWP weighted with the vertical sum
of the Z profile. The coefficient b is held constant at a
value of 2 assuming vertically constant droplet concen-
tration and distribution width. This method is indepen-
dent of radar calibration and DSD, provided that the
sixth moment of the DSD can be related to the square
of the third moment. The algorithm constrains the re-
trieved LWC profile exactly to LWP in a linear way.

In the following comparison, the GENE dataset is
used to test the different methods. To simulate the real
dBZ measurement a Gaussian noise distribution with 3-
dBZ standard deviation is added to the dBZ profile (Ta-
ble 2). The obtained LWP value from the model is sub-
ject to noise corresponding to the error resulting from
the LWP retrieval (section 2d). In the lowest 250 m
above cloud base, both OE methods show a relative
retrieval error of about 55% in comparison to 75% for
the Frisch method. In the five heights above the lowest
layer, the rms errors of the Frisch algorithm and the OE-
pure algorithm do not differ significantly, whereas the
OE-ap method shows relative errors, which are smaller
by about 10% to 15% (except at cloud top). The al-
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TABLE 2. GKSS 95-GHz radar characteristics while operating on
3 Mar 1999.

Frequency
Peak power
Beamwidth
Range resolution
Antenna diameter
Antenna gain
Dynamic range
Sensitivity
Transmit polarization
Receive polarization
Doppler processing
Absolute dBZ accuracy

95 GHz
1.7 kW
0.178

82.5 m
1.2 m

60 dB
70 dB

240 dBZ in 1 km (1-s averaging)
Horizontal or vertical
Horizontal and vertical
Pulse pair
63 dBZ

FIG. 6. Scatterplots of the three LWC retrievals in 625 m above cloud base. Left: Optimal
estimation without inclusion of the a priori profile; center: optimal estimation with inclusion of
the a priori profile; right: method according to Frisch et al. (1998).

gorithm bias is negative for both OE methods. This is
an artifact of the minimization of logarithmized LWC
values (Fig. 3). For the method of Frisch et al., the
vertically integrated LWC bias is zero. But, as can be
seen in Fig. 5c, the bias varies in a range of 0.06 g m23

with an overestimation in the lower and an underesti-
mation of LWC in the upper part of the cloud. This is
due to the fact that total number concentration and dis-
tribution width are not constant with height in the mod-
eled clouds. The OE-ap method has a larger negative
bias than the OE-pure method because large overesti-
mations of LWC at dBZ values larger than 230 are
influenced most strongly by the inclusion of the a priori
profile (Figs. 6a,b). For smaller dBZ values the a priori
information has a smaller impact because the variance
of the a priori profile is quite large. Still, the LWC rms
is decreased notably in all dBZ ranges (Fig. 7) using
the OE-ap algorithm. The rms error does not change
significantly if the bias corrected version of the Z–LWC
relation (section 2c) is used in the OE-ap algorithm.
Only the bias of the dBZ class A, B, and C is closer to
0. Due to the fact that the OE-ap algorithm is partially
constrained to the LWP and the a priori profile, the bias
correction is not as effective as in the simple Z–LWC
relation.

To test the algorithm sensitivity towards the a priori
profiles, which are derived from cloud-model data, the
retrieval is performed with modified a priori profiles

consisting of the original a priori profiles plus and minus
their standard deviations (Fig. 2), respectively. The shift
in positive and negative directions, respectively, of the
a priori profile leads to a change in LWP bias of 615
g m22 relative to the bias when the original a priori
profile is used. The overall performance of the algorithm
is not changed significantly due to the described mod-
ification.

6. Measurements

On 3 March 1999, combined measurements of the
GKSS 95-GHz cloud radar and the 20–30-GHz channel
radiometer were made at GKSS in Geesthacht, Ger-
many. Radar and radiometer were located next to each
other at a distance of about 5 m. Both instruments were
pointing vertically into the atmosphere. This section de-
scribes the instruments, the measurement situation, and
the results of the new LWC algorithm.

a. Cloud radar

The radar used to derive the Z profiles was MIRACLE
(Microwave Radar for Cloud Layer Exploration) of
GKSS, Germany. MIRACLE is described in detail by
Danne et al. (1999). The system is a polarimetric Dopp-
ler radar operating at a frequency of 95 GHz corre-
sponding to a wavelength of 3.2 mm. This frequency is
located in a window region of the microwave spectrum,
which has an atmospheric transmission of about 70%
in the clear-sky case. Compared to typical X- or C-band
radars, this W-band radar allows detection of much
smaller droplet sizes with much less peak power. Also,
the influence of ground clutter is almost negligible in
comparison to longer wave radars due to MIRACLE’s
advanced antenna characteristics. The Z profile is eval-
uated starting at 500 m above ground level to exclude
most influences of the near field. The radar allows the
derivation of Doppler velocity and Doppler spectrum
width using the pulse pair processing method (Danne
et al. 1999). An overview of the radar specifications is
given in Table 2.
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FIG. 7. The rms and bias errors of the LWC retrievals in dependence of the dBZ classes. Solid
line: optimal estimation with a priori information; dashed line: optimal estimation without a priori
information; dotted: optimal estimation with a priori information and dBZ bias correction; dashed–
dotted: method according to Frisch et al. (1998).

FIG. 8. Time series products of the collocated 20–30-GHz radiometer, the GKSS 95-GHz radar MIRACLE, and a
Vaisala CT 25-K laser ceilometer. Top: radar reflectivity profiles with derived ceilometer cloud base heights (diamonds);
center: Doppler velocity profiles; bottom: LWP derived from radiances at 20–30 GHz.

b. Passive microwave radiometer
The passive microwave radiometer measures atmo-

spheric emission at 21.3, 23.8, and 31.7 GHz. It was
built by Elektronik Centralen, Denmark, and was de-
signed especially for highly accurate measurements dur-
ing unattended operation. Calibration is performed ap-
plying the tipping curve method (Hogg et al. 1983). The
radiometer is assumed to have a noise level of 1 K and
a beamwidth of approximately 28.

c. Measurements
Figure 8 shows the recorded time series of radar re-

flectivity and LWP during the afternoon of 3 March

1999 in Geesthacht, Germany. The synoptic situation
was dominated by a low pressure region of about 975-
hPa central pressure over the British Isles. The corre-
sponding cold front passed over the area of northern
Germany in the night from 2 to 3 March 1999. After
the front passage the surface layer cooled off signifi-
cantly, giving rise to a temperature inversion in the up-
per part of the boundary layer. This corresponds quite
well with an observed stratocumulus layer in the early
afternoon ranging up to a quite sharp upper boundary
of 2000 to 2500 m above ground level. After 14.5 UTC
drizzle begins to dominate the reflectivity signal. At 14.6
UTC drizzle-sized drops seem to be falling out of the
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cloud as indicated by Doppler velocities in the range
from 24 to 25 m s21. Included in the upper part of
Fig. 8 are cloud base heights (diamonds) derived from
a Vaisala CT 25-K ceilometer (905-nm wavelength).
The cloud-base height retrieval is based on the back-
scatter profile, which is proportional to the second mo-
ment of the DSD. This means that the backscatter co-
efficient is much more sensitive to small-cloud particles
than drizzle, since normally cloud drops have number
densities several orders of magnitude larger than drizzle
drops. At 14.6 UTC, the ceilometer still detects the
cloud base at about 1250 m. This gives a further hint
that larger drizzle drops below 1250 m are responsible
for increasing the reflectivity signal up to 3 dBZ in that
region. After 14.9 UTC, radar cloud base and ceilometer
cloud base again differ substantially. Doppler velocities
indicate drizzle droplets falling out of the cloud layer.
Retrieving liquid water with the described OE algorithm
in these cases will be very difficult since drizzle does
not necessarily carry considerable amounts of liquid wa-
ter.

The LWC will thus only be retrieved for the time
series until 14.5 UTC. Here radar and ceilometer cloud
base, together with the Doppler velocities, indicate a
statocumulus cloud composed of mostly smaller cloud
droplets. The ground temperature during the time series
was fairly constant at about 108C. No considerable
amount of precipitation was recorded on the ground.
Starting at about 14.6 UTC, the sky was overcast by
clouds up to 4 km in thickness, ranging up to an altitude
of 8 km. It is probably correct to assume that these
clouds consisted mostly of ice, which will not give a
signal in the passive microwave measurement. Indeed,
no considerable amount of LWP enhancement can be
seen around 14.75 UTC, a phase where the stratocu-
mulus layer is very thin. At 14.85 UTC a strong hy-
drometeor attenuation effect can clearly be seen in the
ice cloud. The liquid water in the stratocumulus cloud,
with Z values up to 218 dBZ, results in a decrease of
Z of about 10 dBZ in the upper ice cloud due to atten-
uation.

d. LWC profile retrieval

First, the measured Z profiles, which have a vertical
resolution of 82.5 m, were averaged to a vertical grid
of 250 m, and the radiometer measurements of TB were
interpolated to the radar time steps. In cases of no radar
reflectivity (e.g., 14.38 UTC), LWC is set to zero at all
heights.

The bias-corrected OE-ap algorithm was applied to
the first 1.7 h of measurements. After the first LWP
peak at 12.9 UTC, reflectivities before and after 13.5
UTC do not differ very much. Until 13.5 UTC retrieved
liquid water values range up to 0.7 g m23 at cloud top,
whereas LWC values barely exceed 0.3 g m23 after 1350
UTC. This indicates the presence of relatively small
drops in the beginning and larger drops later on. The

larger LWP values until 13.5 UTC fit well to the Doppler
velocities showing updrafts of up to 1.5 m s21. This
indicates a phase of cloud development. On the other
hand, Doppler velocities around zero from 13.5 to 14.3
UTC and simultaneous values of lower LWP can be
interpreted as a signal of cloud decay. As can be seen
from the lower part of Fig. 9, the LWP resulting from
the LWC algorithm is typically less than the radiometer
retrieval. Particularly low reflectivity clouds (#240
dBZ) with considerable amounts of LWP ($0.1 kg
m22)—for example, from 13.5 to 13.6 UTC—lead to
underestimations, whereas clouds with reflectivities in
the range of 230 dBZ are captured quite well in terms
of LWP. This may be due to the fact that the vertical
cloud extension is not fully resolved by the radar in low
reflectivity regions, since this is also the region of the
radar detection limit. Frequently, clouds are seen in the
microwave signal or in the laser ceilometer backscat-
tering signal and not in the radar signal. In this case the
assumed a priori profile will be vertically too thin and
constrain the algorithm toward a cloud containing less
liquid water than the real cloud with a greater vertical
extension. Further data will be evaluated in the near
future to see if this effect is persistent. But as seen in
section 5, the difference between radiometer-derived
LWP and OE-derived LWC sum is only a limited test
for the algorithm, since bias and rms errors in the dif-
ferent heights cannot be evaluated. This is only possible
if in situ measurements are available.

7. Conclusions and outlook

Significant improvements retrieving LWC profiles
can be achieved if a cloud radar and a microwave ra-
diometer are combined. Model results indicate that if
an a priori climatology is combined with dBZ and LWP
measurements and their covariances are taken into ac-
count, further improvement of the LWC retrieval can
be achieved in comparison to a method constraining the
derived LWC profile exactly to the measured LWP. Rel-
ative errors in the range of 30% to 60% should be ex-
pected when using the described combination of instru-
ments. In comparison, aircraft (in situ) measurements
errors of the DSD, can also be in the range of 20% to
40% (French et al. 2000).

An important requirement the OE retrieval method
should meet is a correct description of the variability of
the modeled atmospheric states. In our case this is in-
dicated by similar values of modeled and empiricaly
measured coefficients a and b. It would definitely be of
advantage if large and representative climatological data
sets of in situ measurements of different cloud DSDs
were available. These could be used instead of the model
statistics to derive an LWC algorithm.

One limitation to the algorithm is the occurrence of
drizzle. Drizzle-sized drops can give the impression of
a cloud reaching down close to the ground. This can
lead to a false estimate of the liquid water distribution
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FIG. 9. Derived LWC time series. Top: Radar reflectivity profiles; center: LWC time series derived from the optimal
estimation algorithm with inclusion of the a priori profile and the dBZ bias correction; bottom: radiometer-derived LWPs
(solid) in comparison with the LWP resulting from the OE algorithm (dashed).

since the larger drizzle-sized drops lead to an overes-
timation of the LWC. As seen by regarding the Doppler
velocities and laser ceilometer measurements, infor-
mation about the occurrence of drizzle dominating the
dBZ signal can be extracted. Methods have been pro-
posed to solely calculate the drizzle liquid water content
of a cloud (e.g., Frisch et al. 1995); however, the main
problem in future will be not only to distinguish between
nondrizzle and drizzle clouds, but to estimate the total
liquid water content of both components in one cloud.
A promising approach has been proposed by Czekala
et al. (1999), who discriminate rain and cloud liquid by
taking advantage of the polarization differences at low
microwave frequencies due to nonspherical drop shapes.

A further uncertainty of the algorithm is the limitation
to pure liquid water clouds. Pure ice cloud cases can be
detected in our case since the radiometer frequencies
used here do not respond to ice, but this instrument
combination does not allow to distinguish between pure
liquid and mixed phase clouds. Since very low ice water
contents (e.g., 1023 g m23) can give rise to Z values in
the range of 230 dBZ, it will be very important to
develop methods to discriminate between cloud liquid
and ice phase. Here, the utilization of the depolarization
ratio of radar measurements or TB measurements at fre-
quencies around 150 GHz could be helpful.

Starting in the summer of 2000, ground-based mea-
surement campaigns will be conducted at different sites
of the BALTEX area within the EU project CLIWA-
NET. CLIWA-NET (Cloud and Liquid Water-Network)
is a network of 12 ground-based stations with micro-
wave and infrared radiometers, cloud radars, laser ceil-

ometers, and standard meteorological observations to
determine large-scale variations of LWP fields. These
fields will be used to calibrate satellite LWP retrievals
and validate numerical weather forecast models. One
major site will be at GKSS in Geesthacht, Germany.
Here the 95-GHz cloud radar MIRACLE, a multichan-
nel microwave radiometer, a laser ceilometer, and an
infrared radiometer will be collocated. The new 22-
channel radiometer MICCY (Microwave Radiometer for
Cloud Carthography) of the University of Bonn, Ger-
many, will measure radiances in three spectral bands.
Besides determining LWP more accurately than a 20–
30-GHz combination, temperature and humidity infor-
mation can be extracted (Crewell et al. 1999). Since
microwave emission of liquid water increases with the
frequency squared, assumptions can be made about the
vertical distribution of LWC with a limited vertical res-
olution (Solheim et al. 1998). However, in contrast to
the radar, the microwave signal is proportional to the
third moment of the DSD meaning that even areas ‘‘con-
taminated’’ with drizzle will contribute with a signal
proportional to the LWC, assuming the microwave sig-
nal is not saturated. Thus, the instrument combination
of cloud radar and MICCY will be a very powerful tool
in determining LWC profiles and DSD parameters. Cur-
rently an OE algorithm is being developed to combine
these instruments. Additionally, aircraft measurements
of cloud DSDs are planned during CLIWA-NET for
algorithm validation.
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lungsübertragungsmodell zur Unterstützung von Niederschlag-
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