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1. Introduction

In Germany, a large part of renewable energy generation is attributed to

wind. Therefore, an accurate forecast of low-level wind is required. One

of the solutions to improve the wind forecast is assimilation of new

observations into a numerical weather prediction model.

In this study, we estimated the potential to improve the short-term

forecast of low-level wind using a network of Doppler lidars (DL). This

study addresses the following questions:

• What impact from DL to expect with respect to surface observations?

• How the impact depends on the number of DL in the network?

• How does the impact depend on the penetration of the lidar signal

through the atmospheric boundary layer (ABL)?
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3. Experimental setup and model data

2. Methodology

The methodology based on the ensemble sensitivity analysis (ESA)

described in [1,2] is used.

In this study, we applied an improved ESA approach which includes an

extension of existing ESA methods by accounting for a localization scale

of the assimilation system.

6. All cases: impact of 25 Doppler lidars in the network

7. Summary

4. Single case study: 29 May 2016, 00 UTC

Fig. 6: Δσ𝑟
2 for u-component of the 80 m wind 

averaged over 16 available cases for different lead 

times. Calculations were performed for 95 SYNOP 

stations only (dashed black lines), and for 25 DL in 

addition to the 95 SYNOP stations (other lines). 

Figure adopted from Nomokonova et al., (2022)

Fig.1: Locations of SYNOP stations used in this work. SYNOP

stations are located within a circle with the radius of 3° and

the center in the middle of the RRA. Magenta dots denote the

model grid used for the state vector. Figure adopted from

Nomokonova et al., (2022)

5. All cases: saturation effect
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Fig. 5: Dependence of Δσ𝑟
2 on the lead time. The forecast metrics are the u-component of the 80 m wind. The assimilation were performed for simulated 

data from 25 DL and 95 SYNOP stations. Gray lines correspond to values of Δσ𝑟
2 averaged over the 50 repetitions for a single case. Figure adopted from 

Nomokonova et al., (2022)

Fig.4: Δσ𝑟
2 for different numbers of DL in the network. The forecast

metric is the u-component of the 80 m wind, lead time 3 h. The solid

lines show the mean values over the 50 random location sets of the DL.

The shaded areas depict 25th and 75th percentiles. Figure adopted from

Nomokonova et al., (2022).
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The sensitivity is regularized using the Tikhonov method [3]:

𝐬 ≈ cov 𝛿𝒋, 𝛿𝐗T 𝐁T 𝐁T 𝐁 + α2 I
−1

,                        (2)

where 𝛿𝐣 is the deviation of the predicted quantity, 𝛿𝐗 is the deviation of
the state vector from corresponding ensemble means, I is the identity

matrix, α = 3 is the regularization coefficient, cov is the cross covariance 

matrix. 

where 𝐇 is the linear forward operator, K is the Kalman gain matrix [4]:

K = (𝐋 ◦ 𝐁) 𝐇T 𝐇 (𝐋 ◦ 𝐁) 𝐇T + 𝑹
−1 𝑇

𝐇 (𝐋 ◦ 𝐁) 𝐇T + 𝑹 + 𝑹
−1

, (4)

where 𝐋 is the localization matrix, ◦ is the Schur product, 𝑹 is the 

observation error matrix.

Model data and synthetic observations:

•Regional climate/weather forecasting model 

SCALE-RM

•1000-member ensemble [5] over Germany, 

space resolution 3 km, 31 vertical levels

•Model domain: 352 x 250 grid points 

centered over Germany

•16 initial times covering 8 days in May/June 

2016

•Every 10th grid point of the model output 

used for the state vector 

•Wind profiles from hypothetical DL (5 levels 

of model output: 80, 429, 1062, 1853, and

2845 m)

The variance of the forecast metric can be found as follows [1]:
𝜎2 = 𝒔𝐁𝒔𝑇 , 1

where 𝐁 is the background covariance matrix, 𝒔 is the sensitivity.

An update of the state δ𝐗 due to the incorporation of observations:

𝛿𝐗𝑢 = 𝛿𝐗 − 𝐊𝐇𝛿𝐗, (3)

The change in the variance of the forecast metric after the assimilation 

of observations:

∆𝜎2≈ var 𝑠 𝛿𝐗 − 𝐊𝐇𝛿𝐗 − var 𝑠𝛿𝐗 , 5

The relative variance change is: ∆𝜎𝑟
2 = ∆𝜎2/ 𝜎2,                                          (6)

This study focused on the Rhein-Rurh area (RRA, gray rectangle, Fig.1) and 

its surroundings. We used low-level wind components (80 m, typical hub-

height of wind turbines) averaged over the RRA as the forecast metrics. 

Fig.2: Mean wind calculated over 1000

ensemble members at 80 m height on 29

May 2016 05 UTC. Black arrows indicate

wind direction. Figure adopted from

Nomokonova et al., (2022)

Fig.3: Dependence of ∆𝜎𝑟
2 on the number of DL in the network. The

forecast metric is the u-component of 80 m wind, lead time 3 h.

The solid lines show the mean values over the 50 repetitions. The

shaded areas depict 25th and 75th percentiles. Figure adopted from

Nomokonova et al., (2022)

• A network of DL is beneficial for the short-term forecast of low-level wind

• Most cost-efficient improvement of low-level wind in the RRA could be 

achieved by a network of 25 DL

• For 1 layer (up to 80 m) in wind profile, the expected improvements

in Δσ𝑟
2 is only a factor of 1.6-2 better than SYNOP only

• Wind profiles up to 1 km (3 levels) can lead to improvements of Δσ𝑟
2 by 

a factor of 2.3-2.7 with respect to SYNOP only.

• The impact of DL network strongly depends on the available range layers 

(limited by optically thick clouds, fog, and hydrometeors) in the wind 

profiles

• Saturation effect in wind components 

starts at 20-30 instruments when at 

least 3 levels are available

• Less pronounced saturation effect only 

for one level

• Most cost-efficient improvement of

low-level wind in RRA achieved by a 

network of 25 DL

• On average 25 DL give 3 times better 

Δσ𝑟
2 than SYNOP only 
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• The analyzed period 

includes distinct weather 

patterns with both day and 

night-time cases

• ±8 – 15% variability in the 

averaged values of Δσ𝑟
2

The benefit depends 

on different DL 

ranges, influenced by 

ABL (optically thick 

clouds, fog, and 

hydrometeors)

• Assimilation of SYNOP only yields on average 

18% and 8% for 1 and 3 h lead time, 

respectively.

• 1 layer in DL wind profile leads to improvement 

of a factor of 1.6 for 1 h lead time and 2 for the 

3 h lead time.

• 3 layers in DL wind profile (up to 1 km) lead to a 

factor of 2.3 improvements for 1 h lead time and 

2.7 for the 3 h lead time.

• The contribution from wind observations >1 km

does not lead to considerable improvements

U wind component


