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• How much improvement can a Doppler wind lidar network add relative to 

conventionally assimilated surface observations?

Question for this study

Motivation

• Networks of ground-based instruments planned

• Model output with 1000 ensembles available for sensitivity analysis

• No real observations are required

• Impact on short-term forecast for renewable energy applications? 

• Our first attempt: wind lidar network for low-level wind forecast
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• Regional climate / weather forecasting model 

SCALE-RM

• 1000-member ensemble (Necker et. al, 2020)

• Over Germany, space resolution 3 km

• Model domain: 352 x 250 grid points centered 

over Germany

• Every 10th grid point of model-output used for the 

analysis to reduce the state space
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Input data

Model Simulated observations

• Wind profiles from hypothetical 

Doppler lidars

• Analysis of 5 levels (model output): 

(80, 429, 1062, 1853, and 2845 m)

https://w3.windfair.net/wind-energy/product/403-windcube-v2

https://w3.windfair.net/wind-energy/product/403-windcube-v2
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Focus of the experiment: RRA with wind parks

Wind power parks (2019):

2825 wind power plants within RRA

Maximum output of RRA power stations:

~5.1 GW (7.4 %)

Total wind power in Germany ~ 69.23 GW 

Data of wind power location were obtained by personal communication 

with Lukas Schmidt and https://github.com/OpenEnergyPlatform/open-MaStR

~142 km

~210 km

https://github.com/OpenEnergyPlatform/open-MaStR
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Forecast metric over RRA: wind speed at 80 m

𝛿𝐉 (forecast metric)

02 UTC 05 UTC

𝛿𝐱

𝐒𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 = cov 𝛿𝐉, 𝛿𝐱 𝐁−1

𝐁 = {𝛿𝐱 𝛿𝐱T}

state vector of 

initial conditions  → 

Domain averaged wind speed over RRA at 80 m

(typical hub-height of wind turbines)

Forecast lead time
3 hours

Ancell and Hakim, 2007

time

Mean wind speed 

↑

29.05.2016 05 UTC
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Method: ensemble sensitivity to estimate variance reduction

𝛿𝜎2 = Sensitivity (𝐀𝐮𝐩𝐝𝐚𝐭𝐞𝐝 − 𝐁) (Sensitivity)T1) Forecast variance reduction:  
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𝐁 – state covariance matrix before added wind lidars; 𝐀𝐮𝐩𝐝𝐚𝐭𝐞𝐝 – updated state covariance matrix;

H – forward operator; R – error covariance matrix; ◦ Schur product; L – localization matrix 

Method: ensemble sensitivity to estimate variance reduction

𝛿𝜎2 = Sensitivity (𝐀𝐮𝐩𝐝𝐚𝐭𝐞𝐝 − 𝐁) (Sensitivity)T

2) Reduction of background covariance matrixes (Ancell and Hakim, 2007):

Kalman gain (K)

(𝐀𝐮𝐩𝐝𝐚𝐭𝐞𝐝 − 𝐁) = −𝐊𝐇𝐁 = −(𝐋 ◦ 𝐁) 𝐇T 𝐇 (𝐋 ◦ 𝐁) 𝐇T + 𝑹
−1

𝐇 𝐁 ,

1) Forecast variance reduction:  
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𝐁 – state covariance matrix before added wind lidars; 𝐀𝐮𝐩𝐝𝐚𝐭𝐞𝐝 – updated state covariance matrix;

H – forward operator; R – error covariance matrix; ◦ Schur product; L – localization matrix 

Method: ensemble sensitivity to estimate variance reduction

𝛿𝜎2 = Sensitivity (𝐀𝐮𝐩𝐝𝐚𝐭𝐞𝐝 − 𝐁) (Sensitivity)T

Sensitivity is regularized by Tikhonov method (α = 0.1) 

2) Reduction of background covariance matrixes (Ancell and Hakim, 2007):

𝛿𝐉 − forecast metric,
𝛿𝐱 – state vector of initial conditions 

Kalman gain (K)

(𝐀𝐮𝐩𝐝𝐚𝐭𝐞𝐝 − 𝐁) = −𝐊𝐇𝐁 = −(𝐋 ◦ 𝐁) 𝐇T 𝐇 (𝐋 ◦ 𝐁) 𝐇T + 𝑹
−1

𝐇 𝐁 ,

3) Sensitivity = 𝐁T 𝐁 + α2 I
−1

𝐁T cov 𝛿𝐉, 𝛿𝐱T
T

1) Forecast variance reduction:  



Experimental setup based on SCALE-RM 1000 ensemble

1) Target: domain averaged 80 m wind speed over RRA 

(typical hub-height of wind turbines)

2) Incorporated observations:

• wind speed at 10 m (SYNOP stations)

• wind speed profiles (up to 25 random stations)

• 1 to 5 levels included: 80, 429, 1062, 1853, 2845 m

• 50 repetitions (random choice of stations)

Potential wind lidar network to improve 3-hour forecasted low-level wind (at 05 UTC):
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Coordinates of the SYNOP stations were provided by 
Elisabeth Bauernschubert

29.05.2016 
NOTE: this study considers only one day (29.05.2016)

𝛿𝐉

02 UTC 05 UTC

3 hours𝛿𝐱



Potential wind lidar observations:

• 25 wind lidars → 1.2 - 2.5x improvement 

• The benefit depends on different wind lidar ranges, influenced by ABL conditions 10

Variance reduction: with applied localizations of 100 km 

80 m

429 m

1 km

2.8 km

1.8 km

Forecast date 29.05.2016 

100 km localization applied

Preliminary results



An additional relative change with respect to SYNOP:     

25 wind lidars → 1.2 - 2.5x improvement (L = 100 km)                        25 wind lidars → 1.5 - 3x improvement (L = 50 km)
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Variance reduction: with applied localizations of 100 and 50 km

Forecast date 29.05.2016 

50 km localization applied

Forecast date 29.05.2016 

100 km localization applied

Preliminary resultsPreliminary results



• As expected more improvements for the smaller lead time (25 wind lidars → 3x improvement with respect to SYNOP)

• Benefits from Doppler lidar network even for a 6 hour lead time (25 wind lidars → 2.8x improvement with respect to SYNOP)
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Variance reduction: for different lead time (localization 50 km) 

Fixed 𝛿𝐉

08 UTC02 UTC 07 UTC05 UTC

6 hours

3 hours

1 hour

Forecast date 29.05.2016 

𝛿𝐱

50 km localization applied

Preliminary results
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Summary

- Extend the analysis to include more available forecasts and days

- Investigate potential impact of ground-based microwave radiometers on cloud cover and 

predicted solar power production

Outlook

• Doppler wind lidars (spread out inside and around RRA) show the potential to improve the low-level wind 

forecast 

• 25 wind lidars → 1.2 - 3x improvement (with respect to SYNOP stations only) depending on localization 

value and different wind lidar ranges, influenced by ABL conditions 

• As expected more improvements for the smaller lead time (25 wind lidars → 3x improvement with 

respect to SYNOP). Benefits from Doppler wind lidar network even for a 6 hour lead time


