Simulation of airborne radar measurements in the Arctic using weather models and an advanced forward operator

Davide Ori, Vera Schemann

University of Cologne, Cologne, Germany

1. Motivation

1) Weather models are an essential component of the upcoming

HALO-AC3 campaign. Applications include better **flight planning** and actual interpretation of the collected data

2) Model domain and resolution needs to be optimized for best results

3) Forward operators are useful to simulate the expected measurements

Fig. 1: Schematics of the forward operator PAMTRA which implements the most advanced scattering methods. **Ensure consistency with the model** microphysical assumptions. Capable of simulating consistently active and passive microwave measurements.

2. Data and methods

<u>MEASUREMENTS</u>

AFLUX aircraft campaign (2019)

- 94 GHz MIRAC radar
- 14 days of measurements

MODELS

ICON (global) and IFS (+ PAMTRA)

- 13 km and 9 km horizontal grid spacing
- 1 mom bulk microphysics
- +18h to +28h forecast time

RT4 radiative transfer Radar simulator Nutput parameter Polarized brightness temperatures Radar Radar Full Doppler spectra

> Fig. 2: Contoured Frequency Altitude Diagram (CFAD) of measured and simulated reflectivity. The distribution of simulated **Z is well matched at the surface** (precipitation rate is good) but the models tend to predict **too low reflectivity at higher levels**.

3. High Resolution ICON

Test added value of high resolution LES models.ICON-LEM 600m horizontal resolution

- 10⁻¹

10⁻² a

10-3

 10^{-4}

20

- 2mom bulk microphysics
- 1 test case 31-03-2019 cold outbreak

Fig. 2: Simulated, vertically integrated reflectivity (31-03-2019). The ICON-LEM 600m (2-mom microphysics) is compared with the operational ICON and IFS models (both 13 km resolution). The flight path is shown with a red line.

Fig. 2: The radar measurements (top-left panel) are compared with the simulated radar reflectivity along the flight track. The higher resolution of the ICON-LEM (bottom-left) allows to see the horizontal variability of the clouds simulated reflectivity values are closer to the observations.

Results:

- Better resolved cloud organization
- Reflectivity values closer to measurements

4. Conclusions & Outlook

- The higher-resolution simulations allow for a better **representation of clouds**. The size of the simulation domain must be adapted to reduce the computational cost - The instrument forward simulations will help in the **flight planning** phase and in the post-mission **data interpretation**

Future work:

- Forward simulations are also expensive. Working on a LUT implementation for fast computations during the HALO-AC3 campaign

- Further experiments with high-resolution ICON to assess the statistical significance of the results

- Evaluate the weather simulations at longer forecast time that are relevant for flight planning

TRANSREGIONAL COLLABORATIVE RESEARCH CENTRE

ti**C A**mplification: nate Relevant **A**tmospheric and Surfa**C**e cesses, and Feedback Mechanisms

HALO-SPP 1294: Understanding clouds and precipitation at the sub kilometer scale using HALO and ICON - Air mass transformations in the Arctic (UCP-Arctic)