

Arcti**C A**mplification: Climate Relevant Atmospheric and Surfa**C**e Processes and Feedback Mechanisms (AC)³

Evaluating water vapour products of state-of-theart models and satellite products in the Arctic Ocean

By Andreas Walbröl, Kerstin Ebell and Susanne Crewell

Motivation

- Water vapour
 - ...has important direct and indirect warming effects in the Arctic ^[1-3]
 - ...contributes to rapid Arctic warming through water vapour feedback loop ^[2]

*Downwelling Longwave Radiation **Integrated Water Vapour

Motivation

- Water vapour
 - ...has important direct and indirect warming effects in the Arctic ^[1-3]
 - ...contributes to rapid Arctic warming through water vapour feedback loop ^[2]
 - ...measurements are uncertain in the Arctic ^[4]

Deviation of monthly mean IWV (June 2017)

University of Cologne | ESA Water Vapour Climate Change Initiative – 2nd User workshop | Andreas Walbröl (a.walbroel@uni-koeln.de)

Motivation

- Water vapour
 - ...has important direct and indirect warming effects in the Arctic ^[1-3]
 - ...contributes to rapid Arctic warming through water vapour feedback loop ^[2]
 - ...measurements are uncertain in the Arctic ^[4]
 - …trends have been observed in some regions and seasons but are also uncertain ^[5-7]
- Reference observations in the Arctic Ocean required to evaluate models and satellite products

Deviation of monthly mean IWV (June 2017)

University of Cologne | ESA Water Vapour Climate Change Initiative – 2nd User workshop | Andreas Walbröl (a.walbroel@uni-koeln.de)

Datasets

- MOSAiC observations:
 - Radiosondes ^[9] (6-hourly, >1090 sondes)
 - Microwave radiometers (MWRs): Synergy of HATPRO (22–58 GHz) and MiRAC-P (183–340 GHz) ^[10]
- Models:
 - Reanalyses: ERA5 ^[11] and MERRA-2 ^[12]
 - Weather forecast: ICON ^[13] and CAFS ^[14, 15]
- Satellite products:
 - IASI combined sounding products ^[16, 17]
 - (IWV retrieval based on AMSR2 ^[18])
- Time range: 22 Oct 2019 05 Aug 2020

MOSAiC drift track of RV Polarstern

Evaluation – IWV

• Reference: MWR

- ERA5 shows best performance regarding RMSD
- Reanalyses and ICON show slight negative bias in dry conditions
- Satellite products have strong negative bias in moist conditions

 Contribution of assimilation of radiosonde data to performance unclear !! (ERA5, MERRA-2, ICON)

Evaluation – Specific humidity profiles

Evaluation – Specific humidity profiles

 Reference: Radiosondes Polly^{XT} ERA5 ICON — IASI MERRA-2 CAFS MWR ____ 8 8 b) f) a) e) Height (km) 6 Models have MAM SON c) 4 dry biases e) DJF MAM in the cold Height (km) ^o ^b ^o Height (km) 2 seasons 0 0 • Some data sets c) g) have moist bias Height (km) 6 at the surface E E in winter and 4 spring 2 0 0 0.0 30 60 -0.25 0.0 0.25 30 60 -0.25 0.25 Relative RMSD_a (%) $Bias_q (g kg^{-1})$ Relative RMSD_a (%) $Bias_q (g kg^{-1})$

Evaluation – Specific humidity profiles

Humidity inversions

Specific humidity profile example on 06 December 2019

University of Cologne | ESA Water Vapour Climate Change Initiative – 2nd User workshop | Andreas Walbröl (a.walbroel@uni-koeln.de)

Evaluation – Humidity inversions

- Occurrence of near-sfc inversions well caught by almost all data sets in autumn and winter
- Occurrence of elevated inversions:
 - Has a seasonal cycle
 - Underestimated by models and remote sensing obs by 10–30 %
- Inversion strength underestimated & depth overestimated
- ERA5 did not perform better than the other models despite higher vertical resolution and 4D-var assimilation

Conclusions

- Satellite products have strong dry biases in high IWV conditions
- ERA5 had smallest specific humidity and IWV errors
- MWR specific humidity profiles are similarly good as most other models
- Negative specific humidity biases in the cold seasons at 0.2–2 km
- Occurrence and strength: underestimated, depth: overestimated
- Surprisingly, ERA5 did not perform better regarding the inversion representation

Reanalysis and ICON evaluation problem:
Evaluation is strongly influenced by assimilation of campaign data!

References

- [1]: Tyndall, J.: I. The Bakerian Lecture.—On the absorption and radiation of heat by gases and vapours, and on the physical connexion of radiation, absorption, and conduction, *Philosophical Transactions of the Royal Society of London*, 151, 1–36, https://doi.org/10.1098/rstl.1861.0001, 1861.
- [2]: Ghatak, D. and Miller, J.: Implications for Arctic amplification of changes in the strength of the water vapor feedback, *Journal of Geophysical Research: Atmospheres*, 118, 7569–7578, https://doi.org/10.1002/jgrd.50578, 2013.
- [3]: Shupe, M. D. and Intrieri, J. M.: Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle, *Journal of Climate*, 17, 616–628, https://doi.org/10.1175/1520– 0442(2004)017<0616:CRFOTA>2.0.CO;2, 2004.
- [4]: Crewell, S., et al.: A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means, *Atmospheric Measurement Techniques*, 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021, 2021.
- [5]: Maturilli, M. and Kayser, M.: Arctic warming, moisture increase and circulation changes observed in the Ny-Ålesund homogenized radiosonde record, *Theoretical* and Applied Climatology, 130, 1–17, https://doi.org/10.1007/s00704-016-1864-0, 2017.
- [6]: Rinke, A., Segger, B., Crewell, S., Maturilli, M., Naakka, T., Nygård, T., Vihma, T., Alshawaf, F., Dick, G., Wickert, J., and Keller, J.: Trends of Vertically Integrated Water Vapor over the Arctic during 1979–2016: Consistent Moistening All Over?, *Journal of Climate*, 32, 6097–6116, https://doi.org/10.1175/JCLI-D-19-0092.1, 2019.
- [7]: Parracho, A. C., Bock, O., and Bastin, S.: Global IWV trends and variability in atmospheric reanalyses and GPS observations, *Atmospheric Chemistry and Physics*, 18, 16 213–16 237, https://doi.org/10.5194/acp-18-16213-2018, 2018.
- [8]: Shupe, M. D., et al.: Overview of the MOSAiC expedition-Atmosphere, Elementa:

Science of the Anthropocene, 10, 00060, https://doi.org/10.1525/elementa.2021.00060, 2022.

- [9]: Dahlke, S., Shupe, M. D., Cox, C. J., Brooks, I. M., Blomquist, B., and Persson, P. O. G.: Extended radiosonde profiles 2019/09–2020/10 during MOSAiC Legs PS122/1 – PS122/5, https://doi.org/10.1594/PANGAEA.961881, 2023.
- [10]: Walbröl, A. et al. 2024: Combining low and high frequency microwave radiometer measurements from the MOSAiC expedition for enhanced water vapour products, submitted to *Atmospheric Measurement Techniques*, In discussion since 30 May 2024, preprint: https://doi.org/10.5194/egusphere-2024-1301.
- [11]: Hersbach, H., et al.: The ERA5 global reanalysis, *Quarterly Journal of the Royal Meteorological Society*, 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
- [12]: Gelaro, R., et al.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), *Journal of Climate*, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
- [13]: Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOsahedral Nonhydrostatic) modelling framework of DWD and MPI-M: Description of the nonhydrostatic dynamical core, *Quarterly Journal of the Royal Meteorological Society*, 141, 563–579, https://doi.org/10.1002/qj.2378, 2015.
- [14]: Solomon, A., et al.: The winter central Arctic surface energy budget: A model evaluation using observations from the MOSAiC campaign, *Elementa: Science of the Anthropocene*, 11, 00 104, https://doi.org/10.1525/elementa.2022.00104, 2023.
- [15]: Solomon, A., Cox, C. J., Intrieri, J. M., Persson, P. O. G., de Boer, G., Shupe, M. D., Hughes, M., and Capotondi, A.: Description and Evaluation of the NOAA Experimental Coupled Arctic Forecast System (CAFS) Model, NOAA Physical Sciences Laboratory, https://doi.org/10.25923/V7VJ-Z744, 2024.

References

- [16]: Blumstein, D., et al.: IASI instrument: technical overview and measured performances, in: Infrared Spaceborne Remote Sensing XII, edited by Strojnik, M., pp. 196 – 207, International Society for Optics and Photonics, SPIE, Denver, CO, https://doi.org/10.1117/12.560907, 2004.
- [17]: August, T., Klaes, D., Schlüssel, P., Hultberg, T., Crapeau, M., Arriaga, A., O'Carroll, A., Coppens, D., Munro, R., and Calbet, X.: IASI on Metop-A: Operational Level 2 retrievals after five years in orbit, *Journal of Quantitative Spectroscopy and Radiative Transfer*, 113, 1340–1371, https://doi.org/10.1016/j.jqsrt.2012.02.028, 2012.
- [18]: Rückert, J. E., Huntemann, M., Tonboe, R. T., and Spreen, G.: Modeling Snow and Ice Microwave Emissions in the Arctic for a Multi-Parameter Retrieval of Surface and Atmospheric Variables From Microwave Radiometer Satellite Data, *Earth and Space Science*, 10, e2023EA003 177, https://doi.org/10.1029/2023EA003177, 2023.
- [19]: Devasthale, A., Sedlar, J., and Tjernström, M.: Characteristics of water vapour inversions observed over the Arctic by Atmospheric Infrared Sounder (AIRS) and radiosondes, *Atmospheric Chemistry and Physics*, 11, 9813–9823, https://doi.org/10.5194/acp-11-9813-2011, 2011.
- [20]: Nygård, T., Valkonen, T., and Vihma, T.: Characteristics of Arctic low-tropospheric humidity inversions based on radio soundings, *Atmospheric Chemistry and Physics*, 14, 1959–1971, https://doi.org/10.5194/acp-14-1959-2014, 2014.
- [21]: Solomon, A., Shupe, M. D., Persson, P. O. G., and Morrison, H.: Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion, *Atmospheric Chemistry and Physics*, 11, 10 127– 10 148, https://doi.org/10.5194/acp-11-10127-2011, 2011.
- [22]: Curry, J.: On the Formation of Continental Polar Air, *Journal of the Atmospheric Sciences*, 40, 2278–2292, https://doi.org/10.1175/1520–0469(1983)040<2278:OTFOCP>2.0.CO;2, 1983.

- [23]: Brunke, M. A., Stegall, S. T., and Zeng, X.: A climatology of tropospheric humidity inversions in five reanalyses, *Atmospheric Research*, 153, 165–187, https://doi.org/10.1016/j.atmosres.2014.08.005, 2015.
- [24]: Barlakas, V., Deneke, H., and Macke, A.: The sub-adiabatic model as a concept for evaluating the representation and radiative effects of low-level clouds in a high-resolution atmospheric model, *Atmospheric Chemistry and Physics*, 20, 303–322, https://doi.org/10.5194/acp-20-303-2020, 2020.
- [25]: Barrientos-Velasco, C., Deneke, H., Hünerbein, A., Griesche, H. J., Seifert, P., and Macke, A.: Radiative closure and cloud effects on the radiation budget based on satellite and shipborne observations during the Arctic summer research cruise, PS106, Atmospheric Chemistry and Physics, 22, 9313–9348, https://doi.org/10.5194/acp-22-9313-2022, 2022.

Evaluation – IWV: 7-day running mean

Reference: MWR

- Most biases exist in both comparisons
- Some errors are related to intraweek variability (e.g., storms)

University of Cologne | ESA Water Vapour Climate Change Initiative - 2nd User workshop | Andreas Walbröl (a.walbroel@uni-koeln.de)

Humidity inversions

- Def.: Increase of specific humidity with height ^[19,20]
- Important for cloud formation and maintenance ^[21]
- Direct longwave radiative effect ^[19] (detailed quantification missing)
- Main formation mechanisms ^[22,23]:
 - Radiative cooling
 - Advection
- Detection:
 - Focus on the main inversions
 - Nested inversions often disregarded

Evaluation – Humidity inversion detectability

• Contingency table: Occurrence of at least 1 humidity inversion in a profile

		Radio		
		True	False	Total
Test data	True	Correct +	False +	True in test data
	False	False -	Correct -	False in test data
		True in radiosondes	False in radiosondes	Total

Dataset	Ν	N _{inv}	Accuracy	Bias	HSS*
MWR	1064	682	0.66	0.65	0.05
IASI	645	336	0.53	0.53	0.02
ERA5	1096	1000	0.93	0.93	0.27
MERRA-2	1096	1001	0.92	0.93	0.24
CAFS	991	917	0.93	0.93	0.10
ICON	1075	1018	0.95	0.96	0.20

- Accuracy = (cp + cn)/total
- Bias = $\left(cp + fp\right) / \left(cp + fn\right)$
- Heidke skill score $\text{HSS} = (cp + cn e_c) / (total e_c)$ with $e_c = ((cp + fn)(cp + fp) + (cn + fn)(cn + fp)) / total$

Models >> MWR > IASI

Humidity inversion statistics

• For MOSAiC expedition

Downwelling longwave radiation effect of humidity inversions

- Radiative transfer simulations ^[24, 25] of downwelling longwave radiation (DLR) in clear sky scenes
- DLR effect of humidity inversions: 1–9 W m^{-2} , and up to 16 W m^{-2} in extreme cases

Longwave radiation effect of different humidity profiles

 Radiative transfer simulations ^[24, 25] of downwelling longwave radiation (DLR) in clear sky scenes
ΔDLR = DLR_{dataset} - DLR_{orig}

- DLR deviations (Δ DLR) mostly within ±2 W m⁻² but can be up to ±5 W m⁻²
- ERA5 and the MWR synergy have the lowest ΔDLR