Evaluating model predictions of the atmospheric hydrological cycle by remote sensing observations – the case study and the long term perspective

N.P.M. van Lipzig¹, F. Ament², M. Schröder³, S. Crewell²
(1) Katholieke Universiteit Leuven, Belgium
(2) LMU München, Germany
(3) Freie Universität Berlin, Germany

EGU 2006, Vienna

Quantitative evaluation of regional precipitation forecasts using multi-dimensional remote sensing observations (QUEST)

Short-range, high-resolution version of Lokal-Modell: LMK (LMKürzestfrist)

Pre-operational phase may 2006 – spring 2007 Lind Operational expected spring 2007

Testsuite 2.2b: July 2004

- Prognostic treatment of cloud water, cloud ice, rain and snow
- 2.8km horizontal resolution, 50 vertical levels

Standard verification DWD Synoptic Upper air (radiosonde) Radar

Boundary Layer Profiles at Lindenberg (by G. Vogel, DWD)

Potential Temperature

Specific humidity

→ LMK boundary layer too stable (shallow) and too wet

Integrated water vapor (IWV) at GPS sites

Cloud top MSG

Cloud base ceilometer

Cloud cover MSG

Summary of long term evaluation of LMK

 Boundary layer too thin and too wet

 IWV predicted very well

 IWV bias of -0.85 kg/m2 for run started at 12UTC Clouds too thick Total cloud cover agrees well with MSG Precipitation underestimated by 20% Observed timing maximum not reproduced

Case studies to look into more detail in the problems

Case 23 Sept 2001 BBC case for WMO workshop 2004

Van Lipzig et al., 2006

Case 23 Sept 2001 BBC case for WMO workshop 2004

Schröder et al., 2006

Case studies versus long-term evaluation

+ Detailed analysis
+ Formulation of hypothesis
- Low significance
+ Sensitivity runs feasible / physical explanation
- Subjectively chosen cases

Studies

Case

+ Tool development

- Automated analysis
 - + High significance
- Difficult to indentify physical mechanism
 - Objective selection of cases