Validating GME, COSMO-EU, and COSMO-DE IWCs with CloudSat CPR data

Eikenberg¹, S., A. Seifert², S. Crewell¹, and M. Mech¹

¹ Institute of Geophysics and Meteorology, University of Cologne ² German Weather Service (DWD)

Last results working contract DWD

- Ideas for my future investigations in QUEST
- Work by M. Bilstein

Motivation

- Better prediction of precipitation and clouds
- Challenge: ice microphysics
- Problem: sparse good observations of ice water contents (ISCCP, AMSU, MLS, MODIS)
 - \rightarrow passive sensors are not height-resolving
- CloudSat is first satellite-based cloud radar

Aim of the study

- Potential of CloudSat for model evaluation?
 - Survey of literature
 - \rightarrow Good quality of the radar reflectivity factor (*Protat et al., 2009*)
- Comparison of 2 different approaches
 - Observation-to-model (Radar-only retrieval)
 - Model-to-observation (QuickBeam)
- Case studies
- Statistical long-term evaluation

2 GME versions

- Global, hydrostatic NWP model
- Vertical resolution: 40 hybrid level, up to 10 hPa
- Horizontal resolution: ~40 km
- Daily operationat forecasts in hourly resolution
- 4 hydrometeor classes: QC, QI, QR, QS

GMErouti (GME6864)	GMEexp (GME6831)
 QC, QI prognostic QR, QS diagnostic 	 All hydrometeor classes prognostic Improved microphysical parameterizations: New size parameterizations for snow (after <i>Field et al., 2005</i>) Autoconversion and growth of ice and snow

What's good about the new GME version?

- magnitude of the IWC values fits better to CloudSat
- position and extension of the clouds is recognized better

What needs further improvement?

- frequency distribution of the simulated reflectivities is very narrow and lopsided
- cloud top often too high
- IWCs still too small

To do:

- 11-d statistics!
- search for CloudSat error?

Period:

11 days in August 2008

Criteria:

Temperature	< -10°C	Pure ice	Т
Cloud cover	> 50 %	Completely cloudy scenes	С
Convection	no	Stratus, small variability	Н
Total column	< 3 dBZ	No strong attenuation due to snow or liquid	
attenuation		water	

Working Contract - Future Investigations - Work by M. Bilstein

N=6 831 429, m=1, all

T N=6 097 294, m=1, all

Working Contract – Future Investigations – Work by M. Bilstein

N=6 831 429, m=1, all

<u>C</u> N=3 214 039, m=1, al

Working Contract – Future Investigations – Work by M. Bilstein

N=6 831 429, m=1, all

H N=816 495, m=1, all

Working Contract – Future Investigations – Work by M. Bilstein

N=6 831 429, m=1, all

TCH N=2 008 082, m=1, all

Working Contract – Future Investigations – Work by M. Bilstein

N=8 053 450, m=41, all

TCH N=298 142, m=41, all

PDF – height-dBZ

Working Contract - Future Investigations - Work by M. Bilstein

No criteria N=28 896 483, m=1

TCHA N=511 112, m=1

Summary

- + Extent and position of clouds is determined better in new GME version
- + Magnitude of IWCs is better represented in new GME version
- Cloud top sometimes too high in GME
- IWC in GME still smaller than in observations

Conclusions

Model-to-observation approach is to be preferred

- + Better control, e.g. profiles with much attenuation can be filtered out
- Unknown particle size: all hydrometeors are modeled as soft spheres in QuickBeam

ToDo

- Extend analysis to longer period
- Paper

- Last results working contract DWD
- Ideas for my future investigations in QUEST
- Work by Maike Bilstein

Reconsider criteria.

11-days is too short a period for sound statistical conclusions

 \rightarrow Extend evaluation of GME to 4 month period: July-Oktober 2009

For precipitation regional-scale models are more interesting

- \rightarrow Extend analysis to COSMO-EU & -DE
- \rightarrow Include gamma distribution in QuickBeam for rain in COSMO-DE!

	QuickBeam	COSMO
Cloud ice		hexagonal plates
Snow	all modeled as soft spheres	rimmed aggregates
Cloud water		spheres
Rain		spheres
Graupel		spheres

How much change/improvement is obtained by simulating the reflectivity factors with the exact hydrometeor shapes of the model?

 \rightarrow Rayleigh- and Mie scattering on new particle shapes has to be implemented.

How large is the underestimation of cloud top height by CloudSat?

How much ice water content is overseen by CloudSat at cloud top level due to its low sensitivity with respect to small particles?

 \rightarrow Utilize MSG SEVIRI or CALIPSO CALIOP!

Figure 4. Frequency distributions of different cloud types in the atmospheric column. Frequency is normalized by level. Cloud types are single-layer (sl) and multi-layer (ml) water (wc), ice (ic) and mixed clouds (mc). (a) Cloudnet categorization data; (b) COSMO-DE model; (c) and (d) show an image detail of (a) and (b), respectively. The height of the AMF site (511 m above MSL) and the COSMO-DE model surface height (683 m above MSL) are indicated by the shaded area.

Does CloudSat - not beeing affected by attenuation - observe this peak?

 \rightarrow Investigate for COMSO-DE for whole model area!

Radiation scheme of COSMO does not take snow into account.

Which and how large are the changes that occur if you do take it into account?

 \rightarrow Test with offline radiation scheme!

- Last results working contract DWD
- Ideas for my future investigations in QUEST
- Work by M. Bilstein

GOP website \rightarrow Data Quicklooks \rightarrow GOP9 Comparison of COSMO-DW and COSMO-EU to radiosonde measurements

Comparisons of profiles of temperature, humidity, wind speed, and wind direction are available for

- Each station, time steps separately
- Each station, monthly averages over all time steps
- Each station, monthly averages, time steps separately
- Each station, summer/winter averages, time steps separately
- All stations, monthly averages over all time steps
- All stations, monthly averages, time steps separately
- All stations, monthly averages, time steps separately
- All stations, monthly averages, time steps separately, different weather types
- All stations, annual average, time steps separately
- All stations, annual average, time steps separately, different weather types

PBL/free troposphere

Working Contract - Future Investigations - Work by M. Bilstein

Question

Model is too dry in lower layers and too wet in upper layers.

→ Problem with vertical moisture transport?

No conclusion.

North/South gradient

Working Contract – Future Investigations – Work by M. Bilstein

Question

Comparisons of model cloud base height with ceilometer data exhibit North/South gradient.

→ North/South differences to be detected in q?

Conclusion:

In general, q is underestimated in northern, overestimated in southern Germany

Summary

- High accuracy of model data (even higher in winter months)
- No coherent conclusion concerning difference PBL-free troposphere
- North Germany: underestimation of q
- South Germany: overestimation of q

Thank you for your attention!