

Evaluation of Hydrological Cycle Predicted by

MAP D-PHASE Models with

GOP Observation

Suraj Polade & Felix Ament

Meteorological Institute, University of Hamburg, Germany

- Period: June November 2007
- 6 ensemble prediction systems
- 7 convection permitting models
- 9 models with convection parameterization

D-Phase Domain

GPS:

Integrated Water Vapor

- Temporal Resolution 15 minute

Ceilometer: Low Cloud Cover

- Temporal Resolution 10 minute

MSG:

Cloud Occurrence Probability Cloud Top Pressure

- Temporal Resolution 1 h
- Temporal Resolution 1 h
- Spatial Resolution: 5 km

Precipitation Data:

- Temporal Resolution 1 h
- Spatial Resolution: 7 km

(Matthias Zimmer, University of Mainz)

Map of GPS Station Map of Ceilometer Station 55° N 55° N 50° N 50° N O, Ø 45[°] N 45[°] N 5°E 15° E 5°E 15° E 10[°] È 10[°] E

ZANAA

Diurnal Cycle of Mean IWV

Optimization of horizontal distance and vertical Height difference

$$d_{opt} = d_{hor} + |d_{vert}| \cdot f_{ve}$$
 $f_{ve} = 500 \longrightarrow$ COSMO standard

Search Radius < 2 Grid

ZMAA

Height correction in Integrated water vapor

Vertical Height difference < |200| m

Model Height

Assumption : Temperature and specific humidity are constant with height in model first level

υн

ZMAN

ZMAN

Hours

UΗ

- Observed diurnal cycle is well represented by most of the model.
- Models with 12 UTC run have jump effect in 12th hour.
- Nearly High resolution model have less bias compared to corresponding low resolution model.
- Models have fixed offset with observed IWV diurnal cycle.

Diurnal Cycle of Cloud Cover

ZMAN

Ш

끰

LMAN

Mean High Cloud Cover Diurnal Cycle

Mean High Cloud Cover Diurnal Cycle

ZMAN

Ш

Diurnal FBIAS (Model – MSG) High Cloud 0 UTC Run

ZMAN

UΗ

- No significant diurnal cycle in High cloud cover in both MSG and Model
- COSMO models with 12 UTC run have jump effect in 12th hour.
- MM5 models are underestimating while, while Qbolam models are quit accurate, other models are overestimating the high cloud cover.

Mean Low Cloud Cover Diurnal Cycle

Ш

Diurnal FBIAS (Model – Ceilo) Low Cloud 0 UTC Run

ZMAN

• Observed diurnal cycle in low cloud well repented by Models.

• All model which have run on 12 UTC have jump effect in 12th hour.

- Model predicted diurnal cycle have phase shift of nearly 4 hour to observation.
- All COSMO models have very less bias, while MM5 are overestimating and Arome, Aladin and Qbolam are underestimating.

SAL Precipitation Verification Method

(Matthias Zimmer, University of Mainz)

- pre-defined region, e.g. a Sub domains
- identification of rain objects

 → feature-based
 → no explicit matching required
- three independent components
 → Structure(S), Amplitude(A), Location(L)

$$A = (D(R_{mod}) - D(R_{obs})) / 0.5*(D(R_{mod}) + D(R_{obs}))$$

D(...) denotes the area-mean value (e.g. Sub Domain) normalized amplitude error in considered area $A \in [-2, ..., 0, ..., +2]$

L = |r(R_{mod}) - r(R_{obs})| / dist_{max} + measure of distance of objects to r(...)

r(...) denotes the centre of mass of the precipitation field in the area normalized location error in considered area $L \in [0, ..., 2]$

 $S = (V(R_{mod}^*) - V(R_{obs}^*)) / 0.5^*(V(R_{mod}^*) + V(R_{obs}^*))$

V(...) denotes the weighted volume average of all scaled precipitation objects in considered area normalized structure error in considered area $S \in [-2, ..., 0, ..., +2]$

• S Component (Structure)	\rightarrow size and shape
too small/peaked	perfect too large/flat
-2 0	2
 A Component (Amplitude) → amount 	
too little	perfect too much
-2 0	2
• L Component (Location)	\rightarrow position
perfect far	away
0 2	
 perfect score: S = A = L = 0 	

observation and forecasts were transformed onto a grid of 7 km

Domain GSWS

No. Ceilometer: 3 No. GPS: 6

ZMAN

GSWS Domain Average Analysis

- Cosmo-DE, Cosmo-EU & MM5_15 predicted precipitation quit well.
- MM5_2_4d shows the improvement in predication over MM5_2_ct.
- Arome, MM5_2_4d and MM5_2_ct have lowest bias in IWV.

• COSMO underestimating low cloud cover and over estimating high cloud cover.

Diurnal Cycle (D-Phase Domain)

- Diurnal cycle in IWV and low cloud cover are well represented by most of the model.
- Model having 12 UTC run have jump effect in 12th hour, in IWV, low cloud cover and high cloud cover, except MM5 in High cloud cover.
- Model predicted diurnal cycle in low cloud cover have phase shift of 4 hour to observation.
- Model which are underestimating or slightly overestimating low cloud cover, are overestimating high cloud cover and vice versa

Sub Domain Analysis (GSWS Domain)

- Cosmo-DE, COSMO-EU & MM5_15 predicted precipitation quit well.
- MM5_2_4d with GPS data assimilation have improvement in predication over MM5_2_ct.

Thank You

