Deutscher Wetterdienst GB Forschung und Entwicklung

Current work and DWD

Axel Seifert

with Jochen Förstner, Günther Zängl, Michael Baldauf, Klaus Stephan, Christph Schraff

Deutscher Wetterdienst, Offenbach

QPF with COSMO-EU: LF vs RK core

Known problems and biases:

- Operational COSMO-EU shows a strong overestimation of stratiform (grid-scale) precipitation during winter.
- COSMO-EU with most recent version of the Runge-Kutta numerics reduces the wintertime bias, but the reduction seems to be too strong leading to an underestimation of precipitation.

Outline of this talk:

- QPF verification comparing Leapfrog and Runge-Kutta in COSMO-EU
- Microphysics experiments: re-tuning necessary for RK-core?
- Conclusions

Accumulated precip April 2009:

RK-core suite

REGNIE

LF COSMO-EU

- Operational COSMO-EU with LF shows strong positive bias.
- COSMO-EU with RK-core reduces the precip amount, but leading to a negative bias. Spatial distribution is too smooth, orographic enhancement is underestimated.

Accumulated precip August 2009:

RK-core suite

REGNIE

LF COSMO-EU

- Operational COSMO-EU with LF shows small positive bias.
- COSMO-EU with RK-core shows again a strong negative bias.

Statistical Scores vs 24h accumulation REGNIE

March+April

MJJA2009

- LF-core predicts too many 5-20 mm/24h events during winter.
- RK-core has a dry bias and misses strong events during winter
- During summer numer of strong events is overestimated when using the LF-core, but the RK-core has a dry bias.
- ETS is similar during winter, but during summer RK gives lower ETS.

Huge difference
 between both
 dynamical cores.

Dynamics and physics in COSMO-EU

Motivation:

- RK core leads to much less precipitation, especially stronger events are underestimated or missing completely.
- Numerics experts tell us:

'the vertical velocity in the LF-core simulations is much too noisy due to numerical problems, especially over orography'.

 Model physics has over the last decade been developed - and tuned - for the LF-core. Do we need to re-tune or completely overhaul our model physics?

Microphysics in COSMO-EU

Possible modifications in cloud microphysics:

• Higher fall speed of snow by changing der pre-factor a in

 $v_s = a (D/D_0)^b$, (operational a=15, possible range a=15-30)

- Higher autoconversion rate by reducing the number concentration of cloud droplets $AU \sim N_c^{-2}$, (operational N_c = 500 cm⁻³, possible range 50-1000 cm⁻³)
- Taking into account the density correction of the fall speeds of snow and rain $v \sim (\rho_0/\rho)^{1/2}$, (traditionally neglected in the COSMO model).

Precipitation accumulation for April 2009

REGNIE

RK control

 \rightarrow Only a very small effect for the total accumulation over one month.

RK microphysics

24h accumulated precip 10. March 2009: NUMEX Exp. 6915 vs 6916

- → Orographic precipitation is enhanced by the changes in cloud microphysics
- → RK microphysics is the best forecast in this case

Statistical Scores 24h accumulation vs REGNIE for Feb + March 2009

- → Strong overestimation of precip with LF-core, almost no bias in RK up to 5 mm/24h.
- ➔ Re-tuning of microphysics can improve model behavior for strong precip events, especially orographic precip, but an underestimation of strong events still remains.
- → ETS is similar for LF-core and RK+Micro experiment.

24h accumulation 23. June 2009: (stand-alone simulations, no data assimilation)

- For this extreme event the underestimation by RK is a big issue for warnings!
- → Changes in microphysics have little impact on this kind of events.

Deutscher Wetterdienst GB Forschung und Entwicklung

Conclusions

- RK-core can solve the old problem of overestimation of precipitation in wintertime.
- RK-core suffers from a dry bias. Strong and extreme events are underestimated.
- A physically reasonable re-tuning of the microphysics parameterization can reduce some of the biases, i.e., lead to more orographic precip. But a lack/underestimation of strong events remains.
- Re-tuning of convection scheme necessary?
- ➔ Numerics experts will have to look into it again, but with a modified microphysics scheme the RK-core seems to give reasonable results.
- The guidance for extreme precipitation events would change from over- to underforecasting.
- → What can we really expect for a model with 7 km grid-spacing?

all experiments by Klaus Stephan

Starting point:

convection-permitting COSMO version as operational in summer 2007 strongly underestimates diurnal cycle of precipitation in convective conditions

test period : 31 May – 13 June 2007: weak anticyclonic, warm and rather humid, rather frequent and strong air-mass convection

Model changes

- 'old PBL': COSMO V4_0 , 'original' model version (operational in summer 2007)
- 'old PBL / SL': COSMO V4_8, with Semi-Lagrange instead of Bott advection for humidity, hydrometeors, turbulent kinetic energy (opr. during winter 08/09)
- 'new PBL': COSMO V4_8, with Bott advection and reduced turbulent mixing (opr. summer 09):
 - reduced max. turbulent length scale (Blackadar length : 200 m \rightarrow 60 m)

- reduced subgrid cloud fraction in moist turbulence

COSMO General Meeting, Offenbach, 7 – 11 Sept. 2009 Dependance of bias on initial time of forecasts

christoph.schraff@dwd.de

'new PBL' : improves diurnal cycle of precip, except for first 12 hrs of 12-UTC runs

COSMO General Meeting, Offenbach, 7 – 11 Sept. 2009 Dependance of bias on initial time of forecasts

christoph.schraff@dwd.de

Possible reasons for problems with 12-UTC runs:

- Latent Heat Nudging ?
- radiosonde humidity (daytime RS92 dry bias)?
- radiosonde / aircraft temperature ?
- other?

COSMO General Meeting, Offenbach, 7 – 11 Sept. 2009 Dependance of bias on initial time of forecasts

christoph.schraff@dwd.de

Summary

- obs biases Vaisala RS92 : dry bias at daytime
 - aircraft : warm bias (mainly ascents, dep. on aircraft type)
- model biases:
 - old PBL: diurnal cycle of precip far too weak, dep. on initial time of forecast
 - much too humid above PBL , little T-bias
 - new PBL: much better diurnal cycle of precip (still too weak), except first 12 h of 12-UTC runs
 - still too humid above PBL
 - too warm and unstable in low troposphere at daytime
- sensitivity tests done:
 - little impact of LHN on biases
 - no RS humidity: improves precip of 12-UTC run only with old PBL, hardly with new PBL
 - no temperature (only old PBL): slight further improvement

- further tests: no T (+ ps) obs with new PBL
 - bias correct Vaisala RS92 obs: total error, or only radiation error \rightarrow not likely to cure problem
- what to do with T-obs? correct obs bias : aircraft-T (\rightarrow worse ?)
 - adjust T-obs to model T-bias ? (\rightarrow hides model problems)
 - omit daytime T-obs at low troposphere (up to which height ?)
 (→ loss of info)
- model biases: make the job for data assimilation very hard, will not get better with advanced DA methods that make stronger use of the NWP model (LETKF)
 - \rightarrow (should we investigate) reason for these model biases ?
 - insufficient resolution (to resolve convection) ?
 - \rightarrow look at runs with resolution \leq 1 km ? (and vertical resolution ?)
 - parameterisations not fully adequate ?
 could they still be improved at current resolution ?
 (also have biases in PBL in absence of convection (small dep. on resolution)
 - \rightarrow or should we adjust DA (correct obs to model bias (T, q), omit obs)?
 - \rightarrow or should we live with the problem ? (do other COSMO members have it too ?)

