Priority Program SPP 1167 of the DFG Quantitative Precipitation Forecast

QUEST – First Phase

Susanne Crewell¹, Felix Ament¹, Michael Baldauf⁵, George Craig², Jürgen Fischer³, Nicole van Lipzig⁴, Martin Hagen², Monika Pfeifer², Marc Schröder³, Wenchieh Yen¹ ¹⁾ Meteorological Institute. Munich University (MIM). ²⁾ Institute of Atmospheric Physics (DLR). ³⁾ Institute for Space Sciences.

¹⁾ Meteorological Institute, Munich University (MIM), ²⁾ Institute of Atmospheric Physics (DLR), ³⁾ Institute for Space Sciences, Free University of Berlin (FUB), ⁴⁾ Katholieke Universiteit Leuven (KUL), ⁵⁾ German Meteorological Service, Offenbach (DWD)

Wedel Percentions Model Percentions Model Percentions Percentions

Example: 12 August 2004, 18UTC. Modeled reflectivities in the POLDIRAD domain are derived from an improved LM simulation with reduced Foehn effects.

Objectives

Precipitation is the final atmospheric process of the hydrological cycle. Consequently quantitative precipitation forecasts (QPF) can only be successful, if a model represents all processes of this cycle accurately (see left Figure). The project "Quantitative evaluation of regional precipitation forecasts using multidimensional **remote sensing observations**" (QUEST) aims at a complete analysis of the modeled hydrological cycle in order to **identify the reasons of QPF deficiencies** and to give **distinct advices for model improvement**.

Strategy:

- . Development of new, non-standard evaluation tools (model-to-observation techniques, non-standard quantities, new verification measures).
- Applications of these tools to case studies; Identification of model deficiencies; Focus on Lokal-Modell (LM) of DWD, but other models are considered as well.

III. Long term evaluation using QUEST evaluation tools: Verifying case study results; Synergetic use of all tools to assess cross correlation of model errors; Case study selection.

Sensors and quantities considered by QUEST.

Findings

- Using Graupel as prognostic variable is beneficial but further improvements to the scheme are needed.
 - LM underestimates the lifetime of clouds and has problems to simulate clouds with moderate LWC / optical depth.
 - With respect to the case studies, the shortcomings in cloud predictions are not solved by implementing a shallow convection scheme.

Status

- New evaluations tools are developed and have successfully been applied to case studies. Identification of first model deficiencies.
- Tools applied to a *first* long term evaluation.
- International collaboration established by coordinating a model intercomparision initiated at the Second WMO Cloud Modeling Workshop, Hamburg 2004.
- Close cooperation with DWD: Supporting development of the new Graupel scheme; Evaluation of LMK Testsuites; Joint Meetings

Publications (selected)

Van Lipzig et al.: "Model predicted low-level cloud parameters. Part I: Comparison with observations from the BALTEX Bridge Campaigns", Atmospheric Research, accepted

Schröder et al.: "Model predicted low-level cloud parameters. Part II: Comparison with satellite remote sensing observations during the BALTEX Bridge Campaigns", Atmospheric Research, accepted

Pfeifer, M., Craig, G., Hagen, M. and Keil, C.: "A polarimetric forward operator", Proceeding of ERAD 2004, 494-498 Van Lipzig, N., Wernli, H., Crewell, S., Gantner, L. and

Van Lipzig, N., Wernli, H., Crewell, S., Gantner, L. and Behrendt, A.: "Synthesis of preliminary results of SPP verification projects", SPP Newsletter 1, 2005