Priority Program SPP 1167 of the DFG **Quantitative Precipitation Forecast**

QUEST – Third Phase

Susanne Crewell¹, Felix Ament², George Craig³, Jürgen Fischer⁴, Martin Hagen³, Nicole van Lipzig⁵, Monika Pfeifer³, Thorsten Reinhardt¹, Axel Seifert[®], Stefan Stapelberg⁴

- ³ Institute of Geophysics and Meteorology, University of Cologne (IGMK) ² Meteorological Institute, University of Hamburg,
 ³ Institute of Atmospheric Physics (DLR), ⁴ Institute for Space Sciences, Free University of Berlin (FUB),
 ⁵ Katholieke Universiteit Leuven (KUL), ⁶ German Meteorological Service, Offenbach (DWD)

Objectives

The "Quantitative Evaluation of regional precipitation forecasts using multi-dimensional remote sensing observations" (QUEST) project contributes to the PQP goals:

Identification of physical and chemical processes responsible for the deficiencies in quantitative precipitation forecast

evaluating mesoscale model forecasts of water cycle variables

Observations

D-PHASE OBS

COPS

GOP with focus on satellite RS

- combination of detailed case study investigations and long-term model evaluations
- systematic model deficits by averaging out stochastic errors (initial and/or boundary conditions) - changing model physics in order to attribute the errors to the treatment of specific processes

Determination and use of the potentials of existing and new data and process descriptions to improve quantitative precipitation forecast

- remote sensing data currently not used in routine model verification radar/satellite observations with resolution comparable to COSMO-DE (formerly "LMK", ~ 2.8 km)
- polarimetric radar, millimetre wave radiometry to investigate different hydrometeor species
- life cycle of clouds and precipitating cells from model and reality with MSG

Strategy

QUEST uses multi-dimensional remote sensing observations for multivariate evaluation of model forecasts with focus on variables of the water cycle - specially water vapor, cloud properties and precipitation.

Focal points of the third phase:

- Exploitation of GOP observations
- Generalization of results by including the D-PHASE models Detailed analysis of model deficits already detected during previous phases: i) Case study selection & analysis ii) testing of corresponding model improvements iii) multi-model analysis (D-PHASE)

•

Long

term

evaluation

Tools

Forward Operators (SynPolRad, SynSat/-Mic)

Satellite analysis (Retrievals, tracking,...)

- shape parameters (patchiness)

- regional masks & regime def.

Fuzzy verification

Data mining tools for models

- auto- / cross-correlation

Intercomparison tools

Models COSMO-DE and COSMO-EU by DWD

Oua

ntitativae Praedictio

LEUVEN

Case

study

analysis

OBS - GOP

QUEST

WP 2: Model evaluation Representation of water vapor Errors due to advection or evaporation? Consistent representation of humidity and clouds? Analysis of additional measurements at super sites

Cloudnet

OGPS

Micro Rain Ra

Ceilomete

Weather rada

- (e.g. AMF or Lindenberg) MERIS, MODIS and MSG data to assess temporal /
- spatial evolution and relations to clouds

Development of clouds

Do modeled and observed cloud characteristics (life time, extent, origin, ...) agree?

- Tracking of cloud systems in satellite observations and model simulations
- Detailed studies to COPS IOPs by combining SEVIRI rapid scans and AMSU observations
- Regime related model deficits

Are certain model deficits connected with specific regions or weather situations? Conditional verification

Data base already established during GOP

GOP generalization towards D-PHASE

- Are COSMO deficits common to other models?
- Adaptation of QUEST methods to D-PHASE models "Variable of interest" approach
- Analysis of error structure in the resulting data set

Error structure in the hydrological cycle Are there multivariate error patterns?

- Development of multivariate verification methods (error cross correlation, conditioned evaluation ...)
- Pinpointing at important model improvements

WP 3: Model Improvement

Boundary Layer evolution / daily cycle Why does COSMO moisten and cool the PBL? How much variability is / needs to be resolved?

Optimization of the PBL scheme for high resolution (e.g. turbulent length scale)

D-PHASE

models (right)

operated from

June to Nov. 07

in the Alpine region.

Evaluation of reforecasting experiments with modified PBL parameterizations

Cloud microphysics

Are QPF deficiencies related to representation of the ice phase (snow versus graupel)? - to long lifetime due to incorrect size distributions?

- Analysis of cloud radar, polarimetric radar, AMSU and SMM/I measurements
- Case study analysis of COPS IOPs simulated with 2-moment scheme (with Univ. Karlsruhe) and Meso-NH

Cloud radiation interaction

Does a consistent representation of clouds and radiation improve QPF?

- Testing of the radiation scheme forced by AMF observations
- Testing of improved coupling between precipitating particles and radiation scheme

Evaluation of ensembles

Do today's limited-area ensemble systems describe

- the forecast uncertainty in a multivariate sense?Evaluation of spread-skill-relation for all variables of the hydrological cycle during GOP
- Verification of the error cross-correlations (needed by EnKF data assimilation planed for COSMO)

Expected outcome

- New verification tools implemented at DWD:
- novel observations: ceilometer, satellite retrievals,
 - novel operators: SynPolRad, SynSatMic,Tracking, ...
 - novel methods: conditional verification, cross correlations,...
- Assessment of today's ability of models to represent the
 - hydrological cycle
 - Guidance for QPF improvement by
 - Identification of error patterns
 - Selection of case studies
 - Verification of sensitivity experiments

