

3D cloud-radiation interaction

Sophia Schäfer

Contributions from Robin Hogan (ECMWF), Bernhard Mayer and Carolin Klinger (LMU Munich)

Can change total cloud effect by -25% to +100% in shortwave or +30% in longwave locally – how important globally?

3D effects neglected in most radiation models (1D)

Global model's 2-stream scheme

SPARTACUS: Incorporating 3D effects in a new rapid radiation scheme

(SPeedy Algorithm for Radiative TrAnsfer through CloUd Sides, proposed by Hogan and Shonk, 2013)

Based on 2-stream calculation, incorporates 3D effects as additional transfer terms between clouds and clear sky through cloud sides

Numerical cost ca $2 \times$ that of standard 2-stream scheme

Cloud geometry parameters

Cloud side transfer terms \propto Effective cloud edge length - smoother than measured edge length (Radiative smoothing, Marshak et al., J.G.R. 1995)

Good approximation: Ellipses

Also need to consider clustering of clouds, which determines how much cloud-side emission is intercepted by other clouds

Cloud structure observations

- Scanning cloud radar observations from Jülich Observatory for Cloud Evolution (JOYCE) and A-train satellites
- Derive effective edge length and clustering

MIRA scanning cloud

rac

40

3D Cloud field from MIRA data, visualisation courtesy of M. Fielding

60

41

SPARTACUS performance

Broadband longwave fluxes

SPARTACUS and fully 3D Monte Carlo MYSTIC agree to within 10%
better if we compensate for clustering

• SPARTACUS $10^4 - 10^7 \times cheaper$

Global 3D effects

- **SPARTACUS** is efficient enough for global model implemented in version of ECMWF's IFS radiation code
- 3D effects globally ۲ appreciable!
- Effects depend on cloud structure and solar zenith angle

Surface cloud radiative forcing 00 UTC 1 June 2013 90 0 -10045 Latitude (°N) -200 -300 > -400 -45 -500 -90 -600 360 45 90 135 180 225 270 315 Longitude (°E) Solar zenith angle Surface net 3D effect 00 UTC 1 June 2013 90 20 10 Latitude (°N) 0 -45 -10 -90 -20 45 135 270 360 n 90 80 225 31 Longitude (°E) *Night-time: High sun:* Low sun: positive SW effect positive LW effect negative SW effect

ITaRS

Sophia Schäfer, Meteorological Technology World Expo

ш_2

University of

Reading

Thank you for your attention !

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013): People, ITN Marie Curie Actions Programme (2012-2016) in the frame of ITaRS under grant agreement n° 289923